\import{order/order.tex} \import{relation.tex} \import{set/suc.tex} \import{ordinal.tex} \section{The real numbers} \begin{signature} $\reals$ is a set. \end{signature} \begin{signature} $x + y$ is a set. \end{signature} \begin{signature} $x \rmul y$ is a set. \end{signature} \subsection{Creation of natural numbers} \subsubsection{Defenition and axioms} \begin{abbreviation}\label{inductive_set} $A$ is an inductive set iff $\emptyset\in A$ and for all $a\in A$ we have $\suc{a}\in A$. \end{abbreviation} \begin{abbreviation}\label{zero_is_emptyset} $\zero = \emptyset$. \end{abbreviation} \begin{axiom}\label{reals_axiom_zero_in_reals} $\zero \in \reals$. \end{axiom} \begin{axiom}\label{one_in_reals} $1 \in \reals$. \end{axiom} \begin{axiom}\label{zero_neq_one} $\zero \neq 1$. \end{axiom} \begin{axiom}\label{one_is_suc_zero} $\suc{\zero} = 1$. \end{axiom} \begin{axiom}\label{naturals_subseteq_reals} $\naturals \subseteq \reals$. \end{axiom} \begin{axiom}\label{naturals_inductive_set} $\naturals$ is an inductive set. \end{axiom} \begin{axiom}\label{naturals_smallest_inductive_set} Let $A$ be an inductive set. Then $\naturals\subseteq A$. \end{axiom} \begin{abbreviation}\label{is_a_natural_number} $n$ is a natural number iff $n \in \naturals$. \end{abbreviation} \begin{axiom}\label{naturals_addition_axiom_1} For all $n \in \naturals$ $n + \zero = \zero + n = n$. \end{axiom} \begin{axiom}\label{naturals_addition_axiom_2} For all $n, m \in \naturals$ $n + \suc{m} = \suc{n} + m = \suc{n+m}$. \end{axiom} \begin{axiom}\label{naturals_mul_axiom_1} For all $n \in \naturals$ we have $n \rmul \zero = \zero = \zero \rmul n$. \end{axiom} \begin{axiom}\label{naturals_mul_axiom_2} For all $n,m \in \naturals$ we have $\suc{n} \rmul m = (n \rmul m) + m$. \end{axiom} \begin{axiom}\label{addition_on_naturals} If $x$ is a natural number and $y$ is a natural number then $x+y$ is a natural number. \end{axiom} \begin{axiom}\label{naturals_rmul_is_closed_in_n} For all $n,m \in \naturals$ we have $(n \rmul m) \in \naturals$. \end{axiom} \begin{axiom}\label{naturals_add_is_closed_in_n} For all $n,m \in \naturals$ we have $(n + m) \in \naturals$. \end{axiom} \subsubsection{Natural numbers as ordinals} \begin{lemma}\label{nat_is_successor_ordinal} Let $n\in\naturals$. Suppose $n\neq \emptyset$. Then $n$ is a successor ordinal. \end{lemma} \begin{proof} Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$. $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}. Now $M\subseteq \naturals\subseteq M$ by \cref{subseteq,naturals_smallest_inductive_set}. Thus $M = \naturals$. Follows by \cref{subseteq}. \end{proof} \begin{lemma}\label{nat_is_transitiveset} $\naturals$ is \in-transitive. \end{lemma} \begin{proof} Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$. $\emptyset\in M$. For all $n\in M$ we have $\suc{n}\in M$ by \cref{naturals_inductive_set,suc}. Thus $M$ is an inductive set. Now $M\subseteq \naturals\subseteq M$ by \cref{subseteq,naturals_smallest_inductive_set}. Hence $\naturals = M$. \end{proof} \begin{lemma}\label{natural_number_is_ordinal} Every natural number is an ordinal. \end{lemma} \begin{proof} Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}. \end{proof} \begin{lemma}\label{omega_is_an_ordinal} $\naturals$ is an ordinal. \end{lemma} \begin{proof} Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}. \end{proof} \begin{lemma}\label{omega_is_a_limit_ordinal} $\naturals$ is a limit ordinal. \end{lemma} \begin{proof} $\emptyset\precedes \naturals$. If $n\in \naturals$, then $\suc{n}\in\naturals$. \end{proof} \subsubsection{Properties and Facts natural numbers} \begin{theorem}\label{induction_principle} Let $P$ be a set. Suppose $P \subseteq \naturals$. Suppose $\zero \in P$. Suppose $\forall n \in P. \suc{n} \in P$. Then $P = \naturals$. \end{theorem} \begin{proof} Trivial. \end{proof} \begin{proposition}\label{existence_of_suc} Let $n \in \naturals$. Suppose $n \neq \zero$. Then there exist $n' \in \naturals$ such that $\suc{n'} = n$. \end{proposition} \begin{proof} Follows by \cref{transitiveset,nat_is_transitiveset,suc_intro_self,successor_ordinal,nat_is_successor_ordinal}. \end{proof} \begin{proposition}\label{suc_eq_plus_one} Let $n \in \naturals$. Then $\suc{n} = n + 1$. \end{proposition} \begin{proof} Let $P = \{ n \in \naturals \mid n + 1 = 1 + n \}$. $\zero \in P$. It suffices to show that if $m \in P$ then $\suc{m} \in P$. \end{proof} \begin{proposition}\label{naturals_1_kommu} Let $n \in \naturals$. Then $1 + n = n + 1$. \end{proposition} \begin{proof} Follows by \cref{suc_eq_plus_one,naturals_addition_axiom_2,naturals_addition_axiom_1,naturals_inductive_set,one_is_suc_zero}. \end{proof} \begin{proposition}\label{naturals_add_kommu} For all $n \in \naturals$ we have for all $m\in \naturals$ we have $n + m = m + n$. \end{proposition} \begin{proof} Fix $n \in \naturals$. Let $P = \{ m \in \naturals \mid m + n = n + m \}$. It suffices to show that $P = \naturals$. $P \subseteq \naturals$. $\zero \in P$. It suffices to show that if $m \in P$ then $\suc{m} \in P$. \end{proof} \begin{proposition}\label{naturals_add_assoc} Suppose $n,m,k \in \naturals$. Then $n + (m + k) = (n + m) + k$. \end{proposition} \begin{proof} Let $P = \{ k \in \naturals \mid \text{for all $n',m' \in \naturals$ we have $n' + (m' + k) = (n' + m') + k$}\}$. $P \subseteq \naturals$. $\zero \in P$. It suffices to show that for all $k \in P$ we have $\suc{k} \in P$. Fix $k \in P$. It suffices to show that for all $n' \in \naturals$ we have for all $m' \in \naturals$ we have $n' + (m' + \suc{k}) = (n' + m') + \suc{k}$. Fix $n' \in \naturals$. Fix $m' \in \naturals$. \begin{align*} (n' + m') + \suc{k} \\ &= \suc{(n' + m') + k} \\ &= \suc{n' + (m' + k)} \\ &= n' + \suc{(m' + k)} \\ &= n' + (m' + \suc{k}) \end{align*} \end{proof} \begin{proposition}\label{naturals_rmul_one_left} For all $n \in \naturals$ we have $1 \rmul n = n$. \end{proposition} \begin{proof} Fix $n \in \naturals$. \begin{align*} 1 \rmul n \\ &= \suc{\zero} \rmul n \\ &= (\zero \rmul n) + n \\ &= (\zero) + n \\ &= n \end{align*} \end{proof} \begin{proposition}\label{naturals_add_remove_brakets} Suppose $n,m,k \in \naturals$. Then $(n + m) + k = n + m + k = n + (m + k)$. \end{proposition} \begin{proposition}\label{naturals_add_remove_brakets2} Suppose $n,m,k,l \in \naturals$. Then $(n + m) + (k + l)= n + m + k + l = n + (m + k) + l = (((n + m) + k) + l)$. \end{proposition} \begin{proposition}\label{natural_disstro} Suppose $n,m,k \in \naturals$. Then $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$. \end{proposition} \begin{proof} Let $P = \{n \in \naturals \mid \text{for all $m,k \in \naturals$ we have $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$}\}$. $\zero \in P$. $P \subseteq \naturals$. It suffices to show that for all $n \in P$ we have $\suc{n} \in P$. Fix $n \in P$. It suffices to show that for all $m'$ such that $m' \in \naturals$ we have for all $k' \in \naturals$ we have $\suc{n} \rmul (m' + k') = (\suc{n} \rmul m') + (\suc{n} \rmul k')$. Fix $m' \in \naturals$. Fix $k' \in \naturals$. $n \in \naturals$. \begin{align*} \suc{n} \rmul (m' + k') \\ &= (n \rmul (m' + k')) + (m' + k') \\% \explanation{by \cref{naturals_mul_axiom_2}}\\ &= ((n \rmul m') + (n \rmul k')) + (m' + k') \\%\explanation{by assumption}\\ &= ((n \rmul m') + (n \rmul k')) + m' + k' \\%\explanation{by \cref{naturals_add_remove_brakets,naturals_add_kommu}}\\ &= (((n \rmul m') + (n \rmul k')) + m') + k' \\%\explanation{by \cref{naturals_add_kommu,naturals_add_remove_brakets,naturals_add_assoc}}\\ &= (m' + ((n \rmul m') + (n \rmul k'))) + k' \\%\explanation{by \cref{naturals_add_kommu}}\\ &= ((m' + (n \rmul m')) + (n \rmul k')) + k' \\%\explanation{by \cref{naturals_add_assoc}}\\ &= (((n \rmul m') + m') + (n \rmul k')) + k' \\%\explanation{by \cref{naturals_add_kommu}}\\ &= ((n \rmul m') + m') + ((n \rmul k') + k') \\%\explanation{by \cref{naturals_add_assoc}}\\ &= (\suc{n} \rmul m') + (\suc{n} \rmul k') %\explanation{by \cref{naturals_mul_axiom_2}} \end{align*} \end{proof} \begin{proposition}\label{naturals_rmul_one_kommu} For all $n \in \naturals$ we have $n \rmul 1 = n$. \end{proposition} \begin{proof} Let $P = \{ n \in \naturals \mid n \rmul 1 = n\}$. $1 \in P$. It suffices to show that for all $n' \in P$ we have $\suc{n'} \in P$. Fix $n' \in P$. It suffices to show that $\suc{n'} \rmul 1 = \suc{n'}$. \begin{align*} \suc{n'} \rmul 1 \\ &= n' \rmul 1 + 1 \\ &= n' + 1 \\ &= \suc{n'} \end{align*} \end{proof} \begin{proposition}\label{naturals_rmul_kommu} Let $n, m \in \naturals$. Then $n \rmul m = m \rmul n$. \end{proposition} \begin{proof} Let $P = \{n \in \naturals \mid \forall m \in \naturals. n \rmul m = m \rmul n\}$. $\zero \in P$. $P \subseteq \naturals$. It suffices to show that for all $n \in P$ we have $\suc{n} \in P$. Fix $n \in P$. It suffices to show that for all $m \in \naturals$ we have $\suc{n} \rmul m = m \rmul \suc{n}$. Fix $m \in \naturals$. $n \rmul m = m \rmul n$. \begin{align*} \suc{n} \rmul m \\ &= (n \rmul m) + m \\ &= (m \rmul n) + m \\ &= m + (m \rmul n) \\ &= (m \rmul 1) + (m \rmul n) \\ &= m \rmul (1 + n) \\ &= m \rmul \suc{n} \\ \end{align*} \end{proof} \begin{proposition}\label{naturals_rmul_assoc} Suppose $n,m,k \in \naturals$. Then $n \rmul (m \rmul k) = (n \rmul m) \rmul k$. \end{proposition} \begin{proof} Let $P = \{ n \in \naturals \mid \text{for all $m,k \in \naturals$ we have $n \rmul (m \rmul k) = (n \rmul m) \rmul k$ }\}$. $\zero \in P$. It suffices to show that for all $n' \in P$ we have $ \suc{n'} \in P$. Fix $n' \in P$. It suffices to show that for all $m' \in \naturals$ we have for all $k' \in \naturals$ we have $\suc{n'} \rmul (m' \rmul k') = (\suc{n'} \rmul m') \rmul k'$. Fix $m' \in \naturals$. Fix $k' \in \naturals$. \begin{align*} \suc{n'} \rmul (m' \rmul k') \\ &=(n' \rmul (m' \rmul k')) + (m' \rmul k') \\ &=((n' \rmul m') \rmul k') + (m' \rmul k') \\ &=(k' \rmul (n' \rmul m')) + (k' \rmul m') \\ &=k' \rmul ((n' \rmul m') + m') \\ &=k' \rmul (\suc{n'} \rmul m') \\ &=(\suc{n'} \rmul m') \rmul k' \end{align*} \end{proof} \begin{lemma}\label{naturals_is_equal_to_two_times_naturals} $\{x+y \mid x \in \naturals, y \in \naturals \} = \naturals$. \end{lemma} \subsection{Axioms of the reals Part One} We seen before that we can proof the common behavior of the naturals. Since we now want to get furhter in a more efficient way, we introduce the basis axioms of the reals. Such that we can introduce the integers and raitionals as smooth as possible. \begin{axiom}\label{reals_rmul} For all $n,m \in \reals$ we have $(n \rmul m) \in \reals$. \end{axiom} \begin{axiom}\label{reals_add} For all $n,m \in \reals$ we have $(n + m) \in \reals$. \end{axiom} \begin{axiom}\label{reals_axiom_kommu} For all $x,y \in \reals$ $x + y = y + x$ and $x \rmul y = y \rmul x$. \end{axiom} \begin{axiom}\label{reals_axiom_zero} For all $x \in \reals$ $x + \zero = x$. \end{axiom} \begin{axiom}\label{reals_axiom_one} For all $x \in \reals$ we have $x \rmul 1 = x$. \end{axiom} \begin{axiom}\label{reals_axiom_add_invers} For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. \end{axiom} \begin{axiom}\label{reals_axiom_mul_invers} For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \rmul y = 1$. \end{axiom} \begin{axiom}\label{reals_axiom_disstro1} For all $x,y,z \in \reals$ $x \rmul (y + z) = (x \rmul y) + (x \rmul z)$. \end{axiom} \begin{axiom}\label{reals_disstro2} For all $x,y,z \in \reals$ $(y + z) \rmul x = (y \rmul x) + (z \rmul x)$. \end{axiom} \begin{axiom}\label{reals_reducion_on_addition} For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. \end{axiom} \begin{abbreviation}\label{rless} $x < y$ iff $x \rless y$. \end{abbreviation} \begin{abbreviation}\label{less_on_reals} $x \leq y$ iff it is wrong that $y < x$. \end{abbreviation} \begin{abbreviation}\label{greater_on_reals} $x > y$ iff $y \leq x$. \end{abbreviation} \begin{abbreviation}\label{greatereq_on_reals} $x \geq y$ iff it is wrong that $x < y$. \end{abbreviation} \begin{abbreviation}\label{is_positiv} $x$ is positiv iff $x > \zero$. \end{abbreviation} \begin{axiom}\label{tarski1} For all $x,y \in \reals$ we have if $x < y$ then $\lnot y < x$. \end{axiom} \begin{axiom}\label{tarski2} For all $x,y \in \reals$ if $x < y$ then there exist $z \in \reals$ such that $x < z$ and $z < y$. \end{axiom} \begin{axiom}\label{tarski3} For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$ such that $x < z < y$. \end{axiom} \begin{axiom}\label{tarski4} For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$. \end{axiom} \begin{axiom}\label{tarski5} For all $x,y \in \reals$ we have there exist $z \in \reals$ such that $x + z = y$. \end{axiom} \begin{axiom}\label{tarski8} $\zero < 1$. \end{axiom} \begin{axiom}\label{labelordersossss} For all $x,y \in \reals$ such that $x < y$ we have for all $z \in \reals$ $x + z < y + z$. \end{axiom} \begin{axiom}\label{nocheinschoeneslabel} For all $x,y \in \reals$ such that $\zero < x,y$ we have $\zero < (x \rmul y)$. \end{axiom} \subsection{The Intergers} \begin{axiom}\label{neg} For all $n \in \reals$ we have $\neg{n} \in \reals$ and $n + \neg{n} = \zero$. \end{axiom} \begin{axiom}\label{neg_of_zero} $\neg{\zero} = \zero$. \end{axiom} \begin{definition}\label{minus} $n - m = n + \neg{m}$. \end{definition} \begin{lemma}\label{minus_in_reals} Suppose $n,m \in \reals$. Then $n - m \in \reals$. \end{lemma} \begin{proof} \begin{byCase} \caseOf{$m = \zero$.} Trivial. \caseOf{$m \neq \zero$.} Trivial. \end{byCase} \end{proof} \begin{proposition}\label{negation_of_negation_is_id} For all $r \in \reals$ we have $\neg{\neg{r}} = r$. \end{proposition} \begin{proof} Fix $r \in \reals$. $r + \neg{r} = \zero$. $\neg{r} + \neg{\neg{r}} = \zero$. Follows by \cref{reals_reducion_on_addition,neg,reals_axiom_kommu}. \end{proof} \begin{definition}\label{integers} $\integers = \{ z \in \reals \mid \exists n \in \naturals. z \in \naturals \lor n + z = \zero\}$. \end{definition} \begin{lemma}\label{n_subset_z} $\naturals \subseteq \integers$. \end{lemma} \begin{lemma}\label{neg_of_naturals_in_integers} For all $n \in \naturals$ we have $\neg{n} \in \integers$. \end{lemma} \begin{lemma}\label{integers_eq_naturals_and_negativ_naturals} $\integers = \{ z \in \reals \mid \exists n \in \naturals. n = z \lor \neg{n} = z\}$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{abbreviation}\label{positiv_real_number} $r$ is a positiv real number iff $r > \zero$ and $r \in \reals$. \end{abbreviation} \begin{proposition}\label{integers_negativ_times_negativ_is_positiv} Suppose $n,m \in \integers$. Suppose $n < \zero$ and $m < \zero$. Then $n \rmul m > \zero$. \end{proposition} \begin{proof} Omitted. %$n \neq \zero$ and $m \neq \zero$. %For all $k \in \naturals$ we have $k = \zero \lor k > \zero$. %There exists $n' \in \reals$ such that $n' + n = \zero$. %There exists $m' \in \reals$ such that $m' + m = \zero$. \end{proof} %TODO: negativ * negativ = positiv. \subsection{The Rationals} \begin{axiom}\label{invers_reals} For all $q \in \reals$ we have $\inv{q} \rmul q = 1$. \end{axiom} \begin{abbreviation}\label{rfrac} $\rfrac{x}{y} = x \rmul \inv{y}$. \end{abbreviation} \begin{abbreviation}\label{naturalsplus} $\naturalsPlus = \naturals \setminus \{\zero\}$. \end{abbreviation} \begin{definition}\label{rationals} %TODO: Vielleicht ist hier die definition das alle inversen von den ganzenzahlen und die ganzenzahlen selbst die rationalen zahlen erzeugen $\rationals = \{ q \in \reals \mid \exists z \in \integers. \exists n \in \naturalsPlus. q = \rfrac{z}{n} \}$. \end{definition} \begin{abbreviation}\label{nominator} $z$ is nominator of $q$ iff there exists $n \in \naturalsPlus$ such that $q = \rfrac{z}{n}$. \end{abbreviation} \begin{abbreviation}\label{denominator} $n$ is denominator of $q$ iff there exists $z \in \integers$ such that $q = \rfrac{z}{n}$. \end{abbreviation} %\begin{proposition}\label{q_is_less_then_p_if_denominator_is_bigger_and_nominator_is_equal} % Suppose $p,q \in \rationals$. % Suppose $z \in \naturals$. % Suppose $p$ is positiv. % Suppose $q$ is positiv. % Suppose $z$ is nominator of $p$. % Suppose $z$ is nominator of $p$. % Suppose $p'$ is denominator of $p$. % Suppose $q'$ is denominator of $q$. % Then $p \leq q$ iff $p' \geq q'$. %\end{proposition} %\begin{theorem}\label{one_divided_by_n_is_in_zero_to_one} % For all $n \in \naturalsPlus$ we have $\zero < \rfrac{1}{n} \leq 1$. %\end{theorem} % TODO: Was man noch so beweisen könnte: bruch kürzung, kehrbruch eigenschaften, bruch in bruch vereinfachung, \subsection{Order on the reals} \begin{lemma}\label{plus_one_order} For all $r\in \reals$ we have $ r < r + 1$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{negation_and_order} Suppose $r \in \reals$. $r \leq \zero$ iff $\zero \leq \neg{r}$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{reals_add_of_positiv} Let $x,y \in \reals$. Suppose $x$ is positiv and $y$ is positiv. Then $x + y$ is positiv. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{reals_mul_of_positiv} Let $x,y \in \reals$. Suppose $x$ is positiv and $y$ is positiv. Then $x \rmul y$ is positiv. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma0} For all $x \in \reals$ we have not $x < x$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma1} Let $x,y,z \in \reals$. Suppose $\zero < x$. Suppose $y < z$. Then $(y \rmul x) < (z \rmul x)$. \end{lemma} \begin{proof} Omitted. %There exist $k \in \reals$ such that $y + k = z$ and $k > \zero$ by \cref{reals_definition_order_def}. %\begin{align*} % (z \rmul x) \\ % &= ((y + k) \rmul x) \\ % &= ((y \rmul x) + (k \rmul x)) \explanation{by \cref{reals_disstro2}} %\end{align*} %Then $(k \rmul x) > \zero$. %Therefore $(z \rmul x) > (y \rmul x)$. \end{proof} \begin{lemma}\label{order_reals_lemma2} Let $x,y,z \in \reals$. Suppose $\zero < x$. Suppose $y < z$. Then $(x \rmul y) < (x \rmul z)$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma3} Let $x,y,z \in \reals$. Suppose $\zero < x$. Suppose $y < z$. Then $(x \rmul z) < (x \rmul y)$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma00} For all $x,y \in \reals$ such that $x > y$ we have $x \geq y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma5} For all $x,y \in \reals$ such that $x < y$ we have $x \leq y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma6} For all $x,y \in \reals$ such that $x \leq y \leq x$ we have $x=y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{reals_minus} Assume $x,y \in \reals$. If $x \rminus y = \zero$ then $x=y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition}\label{upper_bound} $x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$. \end{definition} \begin{definition}\label{least_upper_bound} $x$ is a least upper bound of $X$ iff $x$ is an upper bound of $X$ and for all $y$ such that $y$ is an upper bound of $X$ we have $x \leq y$. \end{definition} \begin{lemma}\label{supremum_unique} %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. If $x$ is a least upper bound of $X$ and $y$ is a least upper bound of $X$ then $x = y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition}\label{supremum_reals} $x$ is the supremum of $X$ iff $x$ is a least upper bound of $X$. \end{definition} \begin{definition}\label{lower_bound} $x$ is an lower bound of $X$ iff for all $y \in X$ we have $x < y$. \end{definition} \begin{definition}\label{greatest_lower_bound} $x$ is a greatest lower bound of $X$ iff $x$ is an lower bound of $X$ and for all $y$ such that $y$ is an lower bound of $X$ we have $x \geq y$. \end{definition} \begin{lemma}\label{infimum_unique} If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition}\label{infimum_reals} $x$ is the supremum of $X$ iff $x$ is a greatest lower bound of $X$. \end{definition} %\begin{proposition}\label{safe} % Contradiction. %\end{proposition}