\import{relation.tex} \import{relation/properties.tex} \import{order/quasiorder.tex} % also called "(partial) ordering" or "partial order" to contrast with connex (i.e. "total") orders. \begin{abbreviation}\label{order} $R$ is an order iff $R$ is an antisymmetric quasiorder. \end{abbreviation} \begin{abbreviation}\label{order_on} $R$ is an order on $A$ iff $R$ is an antisymmetric quasiorder on $A$. \end{abbreviation} \begin{abbreviation}\label{strictorder} $R$ is a strict order iff $R$ is transitive and asymmetric. \end{abbreviation} \begin{struct}\label{orderedset} An ordered set $X$ is a quasiordered set such that \begin{enumerate} \item\label{orderedset_antisym} $\lt[X]$ is antisymmetric. \end{enumerate} \end{struct} \begin{definition}\label{tostrictorder} $\tostrictorder{R} = \{w\in R\mid \fst{w}\neq\snd{w}\}$. \end{definition} \begin{definition}\label{toorder} $\toorder{A}{R} = R\union\identity{A}$. \end{definition} \begin{proposition}\label{tostrictorder_iff} $(a,b)\in\tostrictorder{R}$ iff $(a,b)\in R$ and $a\neq b$. \end{proposition} \begin{proof} Follows by \cref{tostrictorder,fst_eq,snd_eq}. \end{proof} \begin{proposition}\label{toorder_reflexive} $\toorder{A}{R}$ is reflexive on $A$. \end{proposition} \begin{proposition}\label{toorder_intro} Suppose $(a,b)\in R$. Then $(a,b)\in\toorder{A}{R}$. \end{proposition} \begin{proof} $R\subseteq\toorder{A}{R}$. \end{proof} \begin{proposition}\label{toorder_elim} Suppose $(a,b)\in\toorder{A}{R}$. Then $(a,b)\in R$ or $a = b$. \end{proposition} \begin{proof} Follows by \cref{toorder,id,union_iff,upair_intro_right,tostrictorder_iff}. \end{proof} \begin{proposition}\label{toorder_iff} $(a,b)\in\toorder{A}{R}$ iff $(a,b)\in R$ or $a = b\in A$. \end{proposition} \begin{proposition}\label{strictorder_from_order} Suppose $R$ is an order. Then $\tostrictorder{R}$ is a strict order. \end{proposition} \begin{proof} $\tostrictorder{R}$ is asymmetric. $\tostrictorder{R}$ is transitive. \end{proof} \begin{proposition}\label{order_from_strictorder} Suppose $R$ is a strict order. Suppose $R$ is a binary relation on $A$. Then $\toorder{A}{R}$ is an order on $A$. \end{proposition} \begin{proof} $\toorder{A}{R}$ is antisymmetric. $\toorder{A}{R}$ is transitive by \cref{transitive,toorder_iff}. $\toorder{A}{R}$ is reflexive on $A$. \end{proof} \begin{proposition}\label{subseteqrel_antisymmetric} $\subseteqrel{A}$ is antisymmetric. \end{proposition} \begin{proof} Follows by \cref{subseteqrel,antisymmetric,pair_eq_iff,subseteq_antisymmetric}. \end{proof} \begin{proposition}\label{subseteqrel_is_order} $\subseteqrel{A}$ is an order on $A$. \end{proposition} \begin{proof} $\subseteqrel{A}$ is a quasiorder on $A$ by \cref{subseteqrel_is_quasiorder}. $\subseteqrel{A}$ is antisymmetric by \cref{subseteqrel_antisymmetric}. \end{proof}