\import{relation.tex} \import{relation/properties.tex} \subsection{Quasiorders} % also called preorder \begin{abbreviation}\label{quasiorder} $R$ is a quasiorder iff $R$ is quasireflexive and transitive. \end{abbreviation} % also called preorder \begin{abbreviation}\label{quasiorder_on} $R$ is a quasiorder on $A$ iff $R$ is a binary relation on $A$ and $R$ is reflexive on $A$ and transitive. \end{abbreviation} \begin{struct}\label{quasiordered_set} A quasiordered set $X$ is a onesorted structure equipped with \begin{enumerate} \item $\lt$ \end{enumerate} such that \begin{enumerate} \item\label{quasiorder_type} $\lt[X]$ is a binary relation on $\carrier[X]$. \item\label{quasiorder_refl} $\lt[X]$ is reflexive on $\carrier[X]$. \item\label{quasiorder_tran} $\lt[X]$ is transitive. \end{enumerate} \end{struct} \begin{lemma}\label{quasiorder_transitive_double} Let $X$ be a quasiordered set. Let $a, b, c, d \in X$. Suppose $a\mathrel{\lt[X]} b\mathrel{\lt[X]} c\mathrel{\lt[X]} d$. Then $a\mathrel{\lt[X]} d$. \end{lemma} \begin{proof} $\lt[X]$ is transitive. Thus $a\mathrel{\lt[X]} c\mathrel{\lt[X]} d$ by \hyperref[transitive]{transitivity}. Hence $a\mathrel{\lt[X]} d$ by \hyperref[transitive]{transitivity}. \end{proof} \begin{proposition}\label{subseteqrel_is_quasiorder} $\subseteqrel{A}$ is a quasiorder on $A$. \end{proposition} \begin{proof} $\subseteqrel{A}$ is reflexive on $A$. $\subseteqrel{A}$ is transitive. \end{proof}