\import{order/partial-order.tex} \begin{struct}\label{meet_semilattice} A meet semilattice $X$ is a partial order equipped with \begin{enumerate} \item $\meet$ \end{enumerate} such that \begin{enumerate} \item\label{meet_type} for all $x,y\in \carrier[X]$ we have $\meet[X](x,y)\in X$. \item\label{meet_lb} for all $x,y\in \carrier[X]$ we have $\meet[X](x,y) \mathrel{\lt[X]} x, y$. \item\label{meet_glb} for all $a,x,y\in \carrier[X]$ such that $a\mathrel{\lt[X]} x, y$ we have $a\mathrel{\lt[X]} \meet[X](x,y)$. \end{enumerate} \end{struct} \begin{proposition}\label{meet_idempotent} Let $X$ be a meet semilattice. Then $\meet(x,x) = x$. \end{proposition} \begin{proof} $\meet(x,x) \mathrel{\lt} x$. $x\mathrel{\lt[X]} x, x$. Thus $x\mathrel{\lt[X]} \meet(x,x)$. \end{proof} %\begin{proposition}\label{meet_comm} % Let $X$ be a meet semilattice. % Suppose $x, y\in X$. % Then $\meet(x,y) = \meet(y,x)$. %\end{proposition} %\begin{proposition}\label{meet_assoc} % Let $X$ be a meet semilattice. % Suppose $x, y, z\in X$. % Then $\meet(x,\meet(y,z)) = \meet(\meet(x,y),z)$. %\end{proposition}