\import{set.tex} \import{set/cons.tex} \import{set/powerset.tex} \import{set/regularity.tex} \import{set/suc.tex} %\import{nat.tex} \section{Transitive sets} We use the word \emph{transitive} to talk about sets as relations, so we will explicitly talk about \emph{\in-transitivity} here. % Here we have to ask TeX to forgive us for eliding the math % mode around \in. We have to put the following into % the preamble of our document: % % \let\mathonlyin\in % \renewcommand{\in}{\ensuremath{\mathonlyin}} % \begin{definition}\label{transitiveset} A set $A$ is \in-transitive iff for all $x, y$ such that $x\in y\in A$ we have $x\in A$. \end{definition} \begin{proposition}\label{transitiveset_iff_subseteq} $A$ is \in-transitive iff for all $a\in A$ we have $a\subseteq A$. \end{proposition} \begin{proposition}\label{transitiveset_iff_pow} $A$ is \in-transitive iff $A\subseteq \pow{A}$. \end{proposition} \begin{proof} For all $a\in A$ we have $a\subseteq A \iff a\in\pow{A}$. Follows by \cref{elem_subseteq,subseteq,pow_iff,transitiveset_iff_subseteq}. \end{proof} \begin{proposition}\label{transitiveset_iff_unions_suc} $A$ is \in-transitive iff $\unions{\suc{A}} = A$. \end{proposition} \begin{proof} Follows by \cref{transitiveset,subseteq,subseteq_antisymmetric,suc,transitiveset_iff_pow,unions_subseteq_of_powerset_is_subseteq,unions_iff,suc_subseteq_intro,powerset_top}. \end{proof} \begin{proposition}\label{transitiveset_iff_unions_subseteq} $A$ is \in-transitive iff $\unions{A}\subseteq A$. \end{proposition} \begin{proposition}\label{transitiveset_upair} Suppose $A$ is \in-transitive. Suppose $\{a,b\}\in A$. Then $a,b\in A$. \end{proposition} % For Kuratowski pairs only: %\begin{proposition}\label{transitiveset_pair} % Suppose $A$ is \in-transitive. % Suppose $(a,b )\in A$. % Then $a,b\in A$. %\end{proposition} % For Kuratowski pairs only: %\begin{proposition}\label{transitiveset_dom} % Suppose $C$ is \in-transitive. % Suppose $A\times B\subseteq C$. % Suppose $b\in B$. % Then $A\subseteq C$. %\end{proposition} % For Kuratowski pairs only: %\begin{proposition}\label{transitiveset_ran} % Suppose $C$ is \in-transitive. % Suppose $A\times B\subseteq C$. % Suppose $a\in A$. % Then $B\subseteq C$. %\end{proposition} \subsubsection{Closure properties of \in-transitive sets} \begin{proposition}\label{emptyset_transitiveset} $\emptyset$ is \in-transitive. \end{proposition} \begin{proposition}\label{union_of_transitiveset_is_transitiveset} Suppose $A$ and $B$ are \in-transitive. Then $A\union B$ is \in-transitive. \end{proposition} \begin{proposition}\label{inter_of_transitiveset_is_transitiveset} Let $A, B$ be \in-transitive sets. Then $A\inter B$ is \in-transitive. \end{proposition} \begin{proposition}\label{suc_of_transitiveset_is_transitiveset} Let $A$ be an \in-transitive set. Then $\suc{A}$ is \in-transitive. \end{proposition} \begin{proposition}\label{unions_of_transitiveset_is_transitiveset} Let $A$ be an \in-transitive set. Then $\unions{A}$ is \in-transitive. \end{proposition} \begin{proposition}\label{unions_family_of_transitiveset_is_transitiveset} Suppose every element of $A$ is an \in-transitive set. Then $\unions{A}$ is \in-transitive. \end{proposition} \begin{proof} Follows by \cref{transitiveset,unions_iff}. \end{proof} \begin{proposition}\label{inters_family_of_transitiveset_is_transitiveset} Suppose every element of $A$ is an \in-transitive set. Then $\inters{A}$ is \in-transitive. \end{proposition} \begin{proof} Follows by \cref{transitiveset,inters,unions_family_of_transitiveset_is_transitiveset}. \end{proof} \section{Ordinals} \begin{definition}\label{ordinal} $\alpha$ is an ordinal iff $\alpha$ is \in-transitive and every element of $\alpha$ is \in-transitive. \end{definition} \begin{proposition}\label{ordinal_intro} Suppose $\alpha$ is \in-transitive. Suppose every element of $\alpha$ is \in-transitive. Then $\alpha$ is an ordinal. \end{proposition} \begin{proposition}\label{ordinal_is_transitiveset} Let $\alpha$ be an ordinal. Then $\alpha$ is \in-transitive. \end{proposition} \begin{proposition}\label{ordinal_elem_is_transitiveset} Let $\alpha$ be an ordinal. Suppose $A\in\alpha$. Then $A$ is \in-transitive. \end{proposition} \begin{proposition}\label{elem_of_ordinal_is_ordinal} Let $\alpha$ be an ordinal. Suppose $\beta\in\alpha$. Then $\beta$ is an ordinal. \end{proposition} \begin{proposition}\label{suc_ordinal_implies_ordinal} Suppose $\suc{\alpha}$ is an ordinal. Then $\alpha$ is an ordinal. \end{proposition} \begin{proposition}\label{transitivesubseteq_of_ordinal_is_ordinal} Let $\alpha$ be an ordinal. Suppose $\beta\subseteq\alpha$. Suppose $\beta$ is \in-transitive. Then $\beta$ is an ordinal. \end{proposition} \begin{proof} Follows by \cref{subseteq,ordinal}. \end{proof} \begin{proposition}\label{ordinal_elem_implies_subseteq} Let $\alpha,\beta$ be ordinals. Suppose $\alpha\in\beta$. Then $\alpha\subseteq\beta$. \end{proposition} \begin{proposition}\label{ordinal_transitivity} Let $\alpha$ be an ordinal. Suppose $\gamma\in\beta\in\alpha$. Then $\gamma\in\alpha$. \end{proposition} \begin{proof} Follows by \cref{ordinal,transitiveset}. % Vampire proof: Follows by \cref{ordinal,subseteq,transitiveset_iff_subseteq}. \end{proof} \begin{proposition}\label{ordinal_suc_subseteq} Let $\beta$ be an ordinal. Suppose $\alpha\in\beta$. Then $\suc{\alpha}\subseteq\beta$. \end{proposition} \begin{abbreviation}\label{ordinal_prec} $\alpha \precedes \beta$ iff $\beta$ is an ordinal and $\alpha\in\beta$. \end{abbreviation} \begin{abbreviation}\label{ordinal_preceq} $\alpha\precedeseq \beta$ iff $\beta$ is an ordinal and $\alpha\subseteq\beta$. % %$\alpha\precedeseq \beta$ iff $\alpha\precedes\beta$ %or $\alpha = \beta$ and $\beta$ is an ordinal. % %$\alpha\precedeseq \beta$ iff $\alpha\precedes\beta$ %or $\beta$ is an ordinal equal to $\alpha$. \end{abbreviation} \begin{lemma}\label{prec_is_ordinal} Let $\alpha,\beta$ be sets. Suppose $\alpha\precedes \beta$. Then $\alpha$ is an ordinal. \end{lemma} \begin{proof} Follows by \cref{elem_of_ordinal_is_ordinal}. \end{proof} We already have global irreflexivity and asymmetry of \in. \in\ is transitive on ordinals by definition. To show that \in\ is a strict total order it only remains to show that \in\ is connex. \begin{proposition}\label{ordinal_elem_connex} For all ordinals $\alpha,\beta$ we have $\alpha\in\beta\lor \beta\in\alpha \lor \alpha = \beta$. \end{proposition} \begin{proof}[Proof by \in-induction on $\alpha$] % Ind hypothesis: % ![Xi,Xbeta]:(elem(Xi,falpha)=>((ordinal(Xi)&ordinal(Xbeta))=>(elem(Xi,Xbeta)|elem(Xbeta,Xi)|Xi=Xbeta)))) % Goal: % ordinal(falpha)&ordinal(fbeta))=>(elem(falpha,fbeta)|elem(fbeta,falpha)|falpha=fbeta) % Assume $\alpha$ is an ordinal. Show for all ordinals $\gamma$ we have $\alpha\in\gamma\lor \gamma\in\alpha \lor \alpha = \gamma$. \begin{subproof}[Proof by \in-induction on $\gamma$] % Now we have: % ![Xi]:(elem(Xi,fgamma)=>(ordinal(Xi)=>(elem(falpha,Xi)|elem(Xi,falpha)|falpha=Xi)))). % Goal: ordinal(fgamma)=>(elem(falpha,fgamma)|elem(fgamma,falpha)|falpha=fgamma)) % Assume $\gamma$ is an ordinal. Follows by \cref{setext,transitiveset,ordinal}. \end{subproof} \end{proof} \begin{proposition}\label{ordinal_proper_subset_implies_elem} Let $\alpha,\beta$ be ordinals. Suppose $\alpha\subset\beta$. Then $\alpha\in\beta$. \end{proposition} \begin{proof} $\beta\setminus\alpha$ is inhabited. Take $\gamma$ such that $\gamma$ is an \in-minimal element of $\beta\setminus\alpha$. Now $\gamma\in\beta$ by \cref{setminus_elim_left}. Hence $\gamma\subseteq\beta$ by \cref{ordinal,transitiveset_iff_subseteq}. For all $\delta\in\beta\setminus\alpha$ we have $\delta\notin\gamma$. Thus $\gamma\setminus\alpha = \emptyset$. Hence $\gamma\subseteq\alpha$. It suffices to show that for all $\delta\in\alpha$ we have $\delta\in\gamma$. Suppose not. Take $\delta\in\alpha$ such that $\delta\notin\gamma$. Now if $\delta = \gamma$ or $\gamma\in\delta$, then $\gamma\in\alpha$ % Original Vampire proof: by \cref{ordinal,elem_subseteq,elem_of_ordinal_is_ordinal,setminus_elim_left,ordinal_elem_connex,inter_eq_left_implies_subseteq,inter_absorb_supseteq_left,transitiveset_iff_subseteq}. by \cref{ordinal,elem_subseteq,elem_of_ordinal_is_ordinal,ordinal_elem_connex,transitiveset_iff_subseteq}. \end{proof} \begin{proposition}\label{ordinal_elem_implies_proper_subset} Let $\alpha,\beta$ be ordinals. Suppose $\alpha\in\beta$. Then $\alpha\subset\beta$. \end{proposition} \begin{proof} $\alpha\subseteq\beta$. \end{proof} \begin{proposition}\label{ordinal_preceq_implies_subseteq} Let $\alpha,\beta$ be ordinals. Suppose $\alpha\precedeseq\beta$. Then $\alpha\subseteq\beta$. \end{proposition} \begin{proof} \begin{byCase} \caseOf{$\alpha = \beta$.} Trivial. \caseOf{$\alpha\precedes\beta$.} $\alpha\subset\beta$. \end{byCase} \end{proof} %\begin{proposition}% %\label{ordinal-subseteq-implies-preceq} %Let $\alpha,\beta$ be ordinals. %Suppose $\alpha\subseteq\beta$. %Then $\alpha\precedeseq\beta$. %\end{proposition} %\begin{proof} % \begin{byCase} % \caseOf{$\alpha = \beta$.} % Trivial. % \caseOf{$\alpha\subset\beta$.} % $\alpha\precedes\beta$. % \end{byCase} %\end{proof} \begin{proposition}\label{ordinal_elem_or_subseteq} Let $\alpha,\beta$ be ordinals. Then $\alpha\in\beta$ or $\beta\subseteq\alpha$. \end{proposition} \begin{proposition}\label{ordinal_subseteq_or_subseteq} Let $\alpha,\beta$ be ordinals. Then $\alpha\subseteq\beta$ or $\beta\subseteq\alpha$. \end{proposition} \begin{proposition}\label{ordinal_subseteq_implies_elem_or_eq} Let $\alpha,\beta$ be ordinals. Suppose $\alpha\subseteq\beta$. Then $\alpha\in\beta$ or $\alpha = \beta$. \end{proposition} \begin{corollary}\label{ordinal_subset_trichotomy} Let $\alpha,\beta$ be ordinals. Then $(\alpha\subset\beta \lor \beta\subset\alpha) \lor \alpha = \beta$. \end{corollary} \begin{proposition}\label{ordinal_nor_elem_implies_eq} Let $\alpha,\beta$ be ordinals. Suppose neither $\alpha\in\beta$ nor $\beta\in\alpha$. Then $\alpha = \beta$. \end{proposition} \begin{proof} Neither $\alpha\subset\beta$ nor $\beta\subset\alpha$. \end{proof} \begin{proposition}\label{ordinal_in_trichotomy} Let $\alpha,\beta$ be ordinals. Then $(\alpha\in\beta \lor \beta\in\alpha) \lor \alpha = \beta$. \end{proposition} \begin{proof} Suppose not. Then neither $\alpha\in\beta$ nor $\beta\in\alpha$. Thus $\alpha = \beta$ by \cref{ordinal_nor_elem_implies_eq}. Contradiction. \end{proof} \begin{corollary}\label{ordinal_prec_trichotomy} Let $\alpha,\beta$ be ordinals. Suppose neither $\alpha\precedes\beta$ nor $\beta\precedes\alpha$. Then $\alpha = \beta$. \end{corollary} \begin{proof} Follows by \cref{ordinal_nor_elem_implies_eq}. \end{proof} \begin{corollary}\label{ordinal_elem_or_superset} Let $\alpha,\beta$ be ordinals. Then $\alpha\in \beta$ or $\beta\subseteq \alpha$. \end{corollary} \subsubsection{Construction of ordinals} \begin{proposition}\label{emptyset_is_ordinal} $\emptyset$ is an ordinal. \end{proposition} % The proof of this theorem benefits from the alternate definition of % transitivity in terms of $\subseteq$. \begin{proposition}\label{suc_ordinal} Let $\alpha$ be an ordinal. $\suc{\alpha}$ is an ordinal. \end{proposition} \begin{proof} $\suc{\alpha}$ is \in-transitive by \cref{ordinal,suc_of_transitiveset_is_transitiveset}. For every $\beta\in\alpha$ we have that $\beta$ is \in-transitive. \end{proof} \begin{proposition}\label{ordinal_iff_suc_ordinal} $\alpha$ is an ordinal iff $\suc{\alpha}$ is an ordinal. \end{proposition} \begin{proposition}\label{ordinal_in_suc} Let $\alpha$ be an ordinal. Then $\alpha\in\suc{\alpha}$. \end{proposition} \begin{corollary}\label{ordinal_precedes_suc} Let $\alpha$ be an ordinal. Then $\alpha\precedes \suc{\alpha}$. \end{corollary} \begin{proposition}\label{ordinal_elem_implies_subset_of_suc} Let $\alpha,\beta$ be ordinals. Suppose $\alpha\in\beta$. Then $\alpha\subseteq\suc{\beta}$. \end{proposition} \begin{proof} $\alpha\subset \beta$. In particular, $\alpha\subseteq \beta$. Hence $\alpha\subseteq \cons{\beta}{\beta}$. \end{proof} \begin{proposition}\label{unions_of_ordinal_is_ordinal} Let $\alpha$ be an ordinal. Then $\unions{\alpha}$ is an ordinal. \end{proposition} \begin{proof} For all $x, y$ such that $x\in y\in \unions{\alpha}$ we have $x\in \unions{\alpha}$ by \cref{unions_intro,unions_iff,transitiveset,ordinal}. Thus $\unions{\alpha}$ is \in-transitive. Every element of $\unions{\alpha}$ is \in-transitive. \end{proof} \begin{lemma}\label{ordinal_subseteq_unions} Let $\alpha$ be an ordinal. Then $\unions{\alpha}\subseteq \alpha$. \end{lemma} \begin{proof} Follows by \cref{ordinal,transitiveset_iff_unions_subseteq}. \end{proof} \begin{proposition}\label{union_of_two_ordinals_is_ordinal} Let $\alpha,\beta$ be ordinals. Then $\alpha\union\beta$ is an ordinal. \end{proposition} \begin{proof} $\alpha\union\beta$ is \in-transitive by \cref{union_of_transitiveset_is_transitiveset,ordinal}. Every element of $\alpha\union\beta$ is \in-transitive by \cref{transitiveset,union_iff,ordinal}. Follows by \cref{ordinal}. \end{proof} \begin{proposition}\label{ordinal_empty_or_emptyset_elem} For all ordinals $\alpha$ we have $\alpha=\emptyset$ or $\emptyset\in\alpha$. \end{proposition} \begin{proof}[Proof by \in-induction] Straightforward. \end{proof} \begin{proposition}\label{transitive_set_of_ordinals_is_ordinal} Let $A$ be a set. Suppose that for every $\alpha\in A$ we have $\alpha$ is an ordinal. Suppose that $A$ is \in-transitive. Then $A$ is an ordinal. \end{proposition} % Apparently Russel first noticed this antimony while reading a paper by Burali-Forti. % Typographic NB: Cesare Burali-Forti is a single person, therefore only a single hyphen! \begin{theorem}[Burali-Forti antimony]\label{buraliforti_antinomy} There exists no set $\Omega$ such that for all $\alpha$ we have $\alpha\in \Omega$ iff $\alpha$ is an ordinal. \end{theorem} \begin{proof} Suppose not. Take $\Omega$ such that for all $\alpha$ we have $\alpha\in \Omega$ iff $\alpha$ is an ordinal. For all $x, y$ such that $x\in y\in \Omega$ we have $x\in \Omega$. Thus $\Omega$ is \in-transitive. Thus $\Omega$ is an ordinal. Therefore $\Omega\in\Omega$. Contradiction. \end{proof} \begin{proposition}\label{inters_of_ordinals_is_ordinal} Let $A$ be an inhabited set. Suppose for every $\alpha\in A$ we have $\alpha$ is an ordinal. Then $\inters{A}$ is an ordinal. \end{proposition} \begin{proof} It suffices to show that $\inters{A}$ is \in-transitive. \end{proof} \begin{proposition}\label{inters_of_ordinals_subseteq} Let $A$ be an inhabited set. Suppose for every $\alpha\in A$ we have $\alpha$ is an ordinal. Then for all $\alpha\in A$ we have $\inters{A}\subseteq \alpha$. \end{proposition} \begin{proposition}\label{inters_of_ordinals_elem} Let $A$ be an inhabited set. Suppose for every $\alpha\in A$ we have $\alpha$ is an ordinal. Then $\inters{A}\in A$. \end{proposition} \begin{proof} % Vampire proof: Follows by \cref{inters_of_ordinals_is_ordinal,in_irrefl,inters_iff_forall,ordinal_subseteq_implies_elem_or_eq,inters_subseteq_elem}. \end{proof} \begin{proposition}\label{inters_of_ordinals_is_minimal} Let $A$ be an inhabited set. Suppose for every $\alpha\in A$ we have $\alpha$ is an ordinal. Then $\inters{A}$ is an \in-minimal element of $A$. \end{proposition} \begin{proof} For all $\alpha\in A$ we have $\inters{A}\subseteq \alpha$. \end{proof} \begin{proposition}\label{inters_of_ordinals_is_minimal_alternate} Let $A$ be an inhabited set. Suppose for every $\alpha\in A$ we have $\alpha$ is an ordinal. Then for all $\alpha\in A$ we have $\inters{A} = \alpha$ or $\inters{A}\in\alpha$. \end{proposition} \begin{proof} For all $\alpha\in A$ we have $\inters{A}\subseteq \alpha$. \end{proof} \begin{proposition}\label{inter_of_two_ordinals_is_ordinal} Let $\alpha,\beta$ be ordinals. Then $\alpha\inter\beta$ is an ordinal. \end{proposition} \begin{proof} $\alpha\inter\beta$ is \in-transitive by \cref{inter,ordinal,transitiveset}. Every element of $\alpha\inter\beta$ is \in-transitive by \cref{transitiveset,inter,ordinal}. Follows by \cref{ordinal}. \end{proof} \subsubsection{Limit and successor ordinals} \begin{definition}\label{limit_ordinal} $\lambda$ is a limit ordinal iff $\emptyset\precedes \lambda$ % by definition of \precedes this means that $\lambda$ is an ordinal and for all $\alpha\in \lambda$ we have $\suc{\alpha}\in \lambda$. \end{definition} \begin{definition}\label{successor_ordinal} $\alpha$ is a successor ordinal iff there exists an ordinal $\beta$ such that $\alpha = \suc{\beta}$. \end{definition} \begin{lemma}\label{positive_ordinal_is_limit_or_successor} Let $\alpha$ be an ordinal such that $\emptyset\precedes\alpha$. Then $\alpha$ is a limit ordinal or $\alpha$ is a successor ordinal. \end{lemma} \begin{proof} \begin{byCase} \caseOf{$\alpha$ is a limit ordinal.} Trivial. \caseOf{$\alpha$ is not a limit ordinal.} Take $\beta$ such that $\beta\in\alpha$ and $\suc{\beta}\notin\alpha$ by \cref{limit_ordinal}. \end{byCase} \end{proof} \begin{lemma}\label{zero_not_successorordinal} $\emptyset$ is not a successor ordinal. \end{lemma} \begin{lemma}\label{zero_not_limitordinal} $\emptyset$ is not a limit ordinal. \end{lemma} \begin{proof} Suppose not. Then $\emptyset\precedes \emptyset$ by \cref{emptyset,limit_ordinal}. Thus $\emptyset\in \emptyset$. Contradiction. \end{proof} \begin{lemma}\label{suc_elem_limitordinal} Let $\lambda$ be a limit ordinal. Let $\alpha\in\lambda$. Then $\suc{\alpha}\in\lambda$. \end{lemma} \begin{proof} Follows by \cref{limit_ordinal}. \end{proof} \begin{lemma}\label{limitordinal_eq_unions} Let $\lambda$ be a limit ordinal. Then $\unions{\lambda} = \lambda$. \end{lemma} \begin{proof} $\unions{\lambda}\subseteq\lambda$ by \cref{limit_ordinal,ordinal_subseteq_unions}. For all $\alpha\in\lambda$ we have $\alpha\in\suc{\alpha}\in\lambda$ by \cref{suc_intro_self,suc_elem_limitordinal}. Thus $\lambda\subseteq\unions{\lambda}$ by \cref{subseteq,unions_intro}. Follows by \cref{subseteq_antisymmetric}. \end{proof} % %\subsection{Natural numbers as ordinals} % %\begin{lemma}\label{nat_is_successor_ordinal} % Let $n\in\naturals$. % Suppose $n\neq \emptyset$. % Then $n$ is a successor ordinal. %\end{lemma} %\begin{proof} % Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$. % $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}. % Now $M\subseteq \naturals\subseteq M$ % by \cref{subseteq,naturals_smallest_inductive_set}. % Thus $M = \naturals$. % Follows by \cref{subseteq}. %\end{proof} % %\begin{lemma}\label{nat_is_transitiveset} % $\naturals$ is \in-transitive. %\end{lemma} %\begin{proof} % Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$. % $\emptyset\in M$. % For all $n\in M$ we have $\suc{n}\in M$ % by \cref{naturals_inductive_set,suc}. % Thus $M$ is an inductive set. % Now $M\subseteq \naturals\subseteq M$ % by \cref{subseteq,naturals_smallest_inductive_set}. % Hence $\naturals = M$. %\end{proof} % %\begin{lemma}\label{natural_number_is_ordinal} % Every natural number is an ordinal. %\end{lemma} %\begin{proof} % Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}. %\end{proof} % %\begin{lemma}\label{omega_is_an_ordinal} % $\naturals$ is an ordinal. %\end{lemma} %\begin{proof} % Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}. %\end{proof} % %\begin{lemma}\label{omega_is_a_limit_ordinal} % $\naturals$ is a limit ordinal. %\end{lemma} %\begin{proof} % $\emptyset\precedes \naturals$. % If $n\in \naturals$, then $\suc{n}\in\naturals$. %\end{proof} %