\import{set.tex} \import{set/powerset.tex} \import{set/product.tex} \section{Relations} \begin{definition}\label{relation} $R$ is a relation iff for all $w\in R$ there exists $x, y$ such that $w = (x, y)$. \end{definition} \begin{definition}\label{comparable} $a$ is comparable with $b$ in $R$ iff $a\mathrel{R}b$ or $b\mathrel{R}a$. \end{definition} \begin{proposition}\label{relext} Let $R, S$ be relations. Suppose for all $x,y$ we have $x\mathrel{R} y$ iff $x\mathrel{S} y$. Then $R = S$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{abbreviation}\label{family_of_relations} $F$ is a family of relations iff every element of $F$ is a relation. \end{abbreviation} \begin{proposition}\label{unions_of_family_of_relations_is_relation} Let $F$ be a family of relations. Then $\unions{F}$ is a relation. \end{proposition} \begin{proposition}\label{inters_of_family_of_relations_is_relation} Let $F$ be a family of relations. Then $\inters{F}$ is a relation. \end{proposition} \begin{proposition}\label{union_relations_is_relation} Let $R, S$ be relations. Then $R\union S$ is a relation. \end{proposition} \begin{proposition}\label{union_relations_is_relation_type} Suppose $R\subseteq A\times B$. Suppose $S\subseteq C\times D$. Then $R\union S\subseteq (A\union C)\times (B\union D)$. \end{proposition} \begin{proof} Follows by \cref{subseteq,union_times_elim,union_iff,union_subseteq_union}. \end{proof} \begin{proposition}\label{inter_relations_is_relation} Let $R, S$ be relations. Then $R\inter S$ is a relation. \end{proposition} \begin{proposition}\label{setminus_relations_is_relation} Let $R, S$ be relations. Then $R\setminus S$ is a relation. \end{proposition} \subsection{Converse of a relation} \begin{definition}\label{converse_relation} $\converse{R} = \{ z\mid \exists w\in R. \exists x, y. w = (x, y)\land z = (y, x)\}$. \end{definition} \begin{proposition}\label{converse_intro} If $y\mathrel{R} x$, then $x\mathrel{\converse{R}} y$. \end{proposition} \begin{proposition}\label{converse_elim} If $x\mathrel{\converse{R}} y$, then $y\mathrel{R} x$. \end{proposition} \begin{proposition}\label{converse_iff} $x\mathrel{\converse{R}} y$ iff $y\mathrel{R} x$. \end{proposition} \begin{proposition}\label{converse_is_relation} $\converse{R}$ is a relation. \end{proposition} \begin{proposition}\label{converse_converse_iff} $x \mathrel{\converse{\converse{R}}} y$ iff $x\mathrel{R} y$. \end{proposition} % Only works if the starting set was a relation (i.e. only has pairs as elements). \begin{proposition}\label{converse_converse_eq} Let $R$ be a relation. Then $\converse{\converse{R}} = R$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{converse_type} Suppose $R\subseteq A\times B$. Then $\converse{R}\subseteq B\times A$. \end{proposition} \begin{proof} It suffices to show that every element of $\converse{R}$ is an element of $B\times A$ by \cref{subseteq}. Fix $w\in\converse{R}$. Take $x, y$ such that $w = (y, x)$ and $x\mathrel{R} y$ by \cref{converse_relation}. Now $(x,y)\in A\times B$ by \cref{subseteq}. Thus $x\in A$ and $y\in B$ by \cref{times_tuple_elim}. Hence $(y,x)\in B\times A$ by \cref{times_tuple_intro}. \end{proof} \begin{proposition}\label{converse_times} Then $\converse{B\times A} = A\times B$. \end{proposition} \begin{proof} For all $w$ we have $w\in\converse{B\times A}$ iff $w\in A\times B$ by \cref{converse_relation,times,times_elem_is_tuple,times_tuple_elim}. Follows by \hyperref[setext]{extensionality}. %Follows by set extensionality. \end{proof} \begin{proposition}\label{converse_emptyset} Then $\converse{\emptyset} = \emptyset$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{converse_subseteq_intro} Let $R$ be a relation. If $R\subseteq S$, then $\converse{R}\subseteq\converse{S}$. \end{proposition} \begin{proof} Follows by \cref{subseteq,converse_relation,relation}. \end{proof} \begin{proposition}\label{converse_subseteq_elim} Let $R$ be a relation. If $\converse{R}\subseteq\converse{S}$, then $R\subseteq S$. \end{proposition} \begin{proof} Follows by \cref{subseteq,converse_relation,relation,converse_subseteq_intro,converse_converse_iff}. \end{proof} \begin{proposition}\label{converse_subseteq_iff} Let $R$ be a relation. $\converse{R}\subseteq\converse{S}$ iff $R\subseteq S$. \end{proposition} \begin{proof} Follows by \cref{converse_subseteq_elim,converse_subseteq_intro}. \end{proof} \begin{proposition}\label{converse_union} $\converse{(R\union S)} = \converse{R}\union\converse{S}$. \end{proposition} \begin{proof} $\converse{(R\union S)}$ is a relation by \cref{converse_is_relation}. $\converse{R}\union\converse{S}$ is a relation by \cref{converse_is_relation,union_relations_is_relation}. For all $a,b$ we have $(a,b)\in\converse{(R\union S)}$ iff $(a,b)\in\converse{R}\union\converse{S}$ by \cref{union_iff,converse_iff}. Follows by \hyperref[relext]{extensionality}. \end{proof} \begin{proposition}\label{converse_inter} $\converse{(R\inter S)} = \converse{R}\inter\converse{S}$. \end{proposition} \begin{proof} $\converse{(R\inter S)}$ is a relation by \cref{converse_is_relation}. $\converse{R}\inter\converse{S}$ is a relation by \cref{converse_is_relation,inter_relations_is_relation}. For all $a,b$ we have $(a,b)\in\converse{(R\inter S)}$ iff $(a,b)\in\converse{R}\inter\converse{S}$ by \cref{inter,converse_iff}. Follows by \hyperref[relext]{extensionality}. \end{proof} \begin{proposition}\label{converse_setminus} $\converse{(R\setminus S)} = \converse{R}\setminus\converse{S}$. \end{proposition} \begin{proof} $\converse{(R\setminus S)}$ is a relation by \cref{converse_is_relation}. $\converse{R}\setminus\converse{S}$ is a relation by \cref{converse_is_relation,setminus_relations_is_relation}. For all $a,b$ we have $(a,b)\in\converse{(R\setminus S)}$ iff $(a,b)\in\converse{R}\setminus\converse{S}$. Follows by \hyperref[relext]{extensionality}. \end{proof} \subsubsection{Domain of a relation} \begin{definition}\label{dom} $\dom{R} = \{ x\mid \exists w\in R. \exists y. w = (x, y)\}$. \end{definition} \begin{proposition}\label{dom_iff} $a\in\dom{R}$ iff there exists $b$ such that $a\mathrel{R} b$. \end{proposition} \begin{proposition}\label{dom_intro} Suppose $a\mathrel{R} b$. Then $a\in\dom{R}$. \end{proposition} \begin{proof} Follows by \cref{dom_iff}. \end{proof} \begin{proposition}\label{dom_emptyset} $\dom{\emptyset} = \emptyset$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{dom_times} $\dom{(A\times B)}\subseteq A$. \end{proposition} \begin{proposition}\label{dom_times_inhabited} Suppose $b\in B$. $\dom{(A\times B)} = A$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{dom_cons} $\dom{\cons{(a,b)}{R}} = \cons{a}{\dom{R}}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{dom_union} $\dom{(A\union B)} = \dom{A}\union\dom{B}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{dom_inter} $\dom{(A\inter B)}\subseteq \dom{A}\inter\dom{B}$. \end{proposition} \begin{proof} Follows by \cref{subseteq,inter,dom_iff}. \end{proof} \begin{proposition}\label{dom_setminus} $\dom{(A\setminus B)}\supseteq \dom{A}\setminus\dom{B}$. \end{proposition} % TODO (also needs to import set/cons) %\begin{proposition}\label{dom_remove_invariant} % Suppose $a\mathrel{R}b$. % Suppose $b\neq c$. % Then $\dom{\remove{(a,b)}{R}} = \dom{R}$. %\end{proposition} \subsubsection{Range of a relation} \begin{definition}\label{ran} $\ran{R} = \{ y\mid \exists w\in R. \exists x. w = (x, y)\}$. \end{definition} \begin{proposition}\label{ran_iff} $b\in\ran{R}$ iff there exists $a$ such that $a\mathrel{R} b$. \end{proposition} \begin{proposition}\label{ran_intro} Suppose $a\mathrel{R} b$. Then $b\in\ran{R}$. \end{proposition} \begin{proof} Follows by \cref{ran_iff}. \end{proof} \begin{proposition}\label{ran_emptyset} $\ran{\emptyset} = \emptyset$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{ran_times} $\ran{(A\times B)}\subseteq B$. \end{proposition} \begin{proposition}\label{ran_times_inhabited} Suppose $a\in A$. $\ran{(A\times B)} = B$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{ran_cons} $\ran{(\cons{(a,b)}{R})} = \cons{b}{\ran{R}}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{ran_union} $\ran{(A\union B)} = \ran{A}\union\ran{B}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{ran_inter} $\ran{(A\inter B)}\subseteq \ran{A}\inter\ran{B}$. \end{proposition} \begin{proof} Follows by \cref{subseteq,inter,ran_iff}. \end{proof} \begin{proposition}\label{ran_setminus} $\ran{(A\setminus B)}\supseteq \ran{A}\setminus\ran{B}$. \end{proposition} \begin{proof} Follows by \cref{subseteq,setminus,ran_iff}. \end{proof} \subsubsection{Domain and range of converse} \begin{proposition}\label{dom_converse} $\dom{\converse{R}} = \ran{R}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{ran_converse} $\ran{\converse{R}} = \dom{R}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \subsubsection{Field of a relation} % We ues fld for the label instead of field so that field stays available for the % algebraic structure. \begin{definition}\label{fld} $\fld{R} = \dom{R}\union\ran{R}$. \end{definition} \begin{proposition}\label{fld_iff} $c\in\fld{R}$ iff there exists $d$ such that $c\mathrel{R}d$ or $d\mathrel{R}c$. \end{proposition} \begin{proof} Follows by \cref{fld,dom_iff,ran_iff,union_iff}. \end{proof} \begin{proposition}\label{fld_intro_left} Suppose $(a,b)\in R$. Then $a\in\fld{R}$. \end{proposition} \begin{proof} Follows by \cref{fld,dom,union_iff}. \end{proof} \begin{proposition}\label{fld_intro_right} Suppose $(a,b)\in R$. Then $b\in\fld{R}$. \end{proposition} \begin{proof} Follows by \cref{fld,ran,union_iff}. \end{proof} \begin{proposition}\label{dom_subseteq_fld} Then $\dom{R}\subseteq\fld{R}$. \end{proposition} \begin{proof} Follows by \cref{fld,union_upper_left}. \end{proof} \begin{proposition}\label{ran_subseteq_fld} Then $\ran{R}\subseteq\fld{R}$. \end{proposition} \begin{proof} Follows by \cref{fld,union_upper_right}. \end{proof} \begin{proposition}\label{fld_times} $\fld{(A\times B)}\subseteq A\union B$. \end{proposition} \begin{proof} Follows by \cref{fld,dom_times,ran_times,union_subseteq_union}. \end{proof} \begin{proposition}\label{relation_elem_times_fld} Let $R$ be a relation. Suppose $w\in R$. Then $w\in\fld{R}\times\fld{R}$. \end{proposition} \begin{proof} Take $a,b$ such that $w = (a, b)$ by \cref{relation}. Then $a,b\in\fld{R}$ by \cref{fld_iff}. Thus $(a,b)\in\fld{R}\times\fld{R}$ by \cref{times_tuple_intro}. \end{proof} \begin{proposition}\label{relation_subseteq_times_fld} Let $R$ be a relation. Then $R\subseteq\fld{R}\times\fld{R}$. \end{proposition} \begin{proof} Follows by \cref{relation_elem_times_fld,subseteq}. \end{proof} \begin{proposition}\label{fld_universal} $\fld{(A\times A)} = A$. \end{proposition} \begin{proposition}\label{fld_emptyset} $\fld{\emptyset} = \emptyset$. \end{proposition} \begin{proposition}\label{fld_cons} $\fld{(\cons{(a,b)}{R})} = \cons{a}{\cons{b}{\fld{R}}}$. \end{proposition} \begin{proof} \begin{align*} \fld{(\cons{(a,b)}{R})} &= \dom{(\cons{(a,b)}{R})}\union\ran{(\cons{(a,b)}{R})} \explanation{by \cref{fld}}\\ &= \cons{a}{\dom{R}}\union\cons{b}{\ran{R}} \explanation{by \cref{dom_cons,ran_cons}}\\ &= \cons{a}{\cons{b}{\dom{R}\union\ran{R}}} \explanation{by \cref{union_cons,union_comm}}\\ &= \cons{a}{\cons{b}{\fld{R}}} \explanation{by \cref{fld}} \end{align*} \end{proof} \begin{proposition}\label{fld_union} $\fld{(A\union B)} = \fld{A}\union\fld{B}$. \end{proposition} \begin{proof} \begin{align*} \fld{(A\union B)} &= \dom{(A\union B)}\union\ran{(A\union B)} \explanation{by \cref{fld}}\\ &= (\dom{A}\union\dom{B})\union(\ran{A}\union\ran{B}) \explanation{by \cref{dom_union,ran_union}}\\ &= (\dom{A}\union\ran{A})\union(\dom{B}\union\ran{B}) \explanation{by \cref{union_comm,union_assoc}}\\ &= \fld{A}\union\fld{B} \explanation{by \cref{fld}} \end{align*} \end{proof} \begin{proposition}\label{fld_inter} $\fld{(A\inter B)}\subseteq \fld{A}\inter\fld{B}$. \end{proposition} \begin{proof} % LATER this is surprisingly slow because the ATP can generate lots of nested intersection terms. Follows by \cref{subseteq,fld_iff,subseteq_inter_iff}. \end{proof} \begin{proposition}\label{fld_setminus} $\fld{(A\setminus B)}\supseteq \fld{A}\setminus\fld{B}$. \end{proposition} \begin{proof} Follows by \cref{setminus_subseteq,fld_iff,subseteq,setminus}. \end{proof} \begin{proposition}\label{fld_converse} $\fld{\converse{R}} = \fld{R}$. \end{proposition} \begin{proof} Follows by \cref{fld,dom_converse,ran_converse,union_comm}. \end{proof} \subsection{Image} \begin{definition}\label{img} $\img{R}{A} = \{b\in\ran{R} \mid \exists a\in A. a\mathrel{R} b \}$. \end{definition} \begin{proposition}\label{img_elem_intro} Suppose $a\in A$ and $a\mathrel{R} b$. Then $b\in\img{R}{A}$. \end{proposition} \begin{proof} Follows by \cref{img,ran}. \end{proof} \begin{proposition}\label{img_iff} $b\in\img{R}{A}$ iff there exists $a\in A$ such that $a\mathrel{R} b$. \end{proposition} \begin{proposition}\label{img_subseteq} Suppose $A\subseteq B$. Then $\img{R}{A}\subseteq \img{R}{B}$. \end{proposition} \begin{proof} Follows by \cref{subseteq,img_iff}. \end{proof} \begin{proposition}\label{img_subseteq_ran} Then $\img{R}{A}\subseteq \ran{R}$. \end{proposition} \begin{proposition}\label{img_dom} Then $\img{R}{\dom{R}} = \ran{R}$. \end{proposition} \begin{proposition}\label{img_union} $\img{R}{A\union B} = \img{R}{A}\union\img{R}{B}$. \end{proposition} \begin{proof} Follows by \cref{setext,union_iff,img_iff}. \end{proof} \begin{proposition}\label{img_inter} % Equality does not hold in general $\img{R}{A\inter B}\subseteq \img{R}{A}\inter\img{R}{B}$. \end{proposition} \begin{proof} Follows by \cref{img_iff,subseteq,inter}. \end{proof} \begin{proposition}\label{img_setminus} % Equality does not hold in general $\img{R}{A\setminus B}\supseteq \img{R}{A}\setminus\img{R}{B}$. \end{proposition} \begin{proof} Follows by \cref{img_iff,subseteq,setminus}. \end{proof} \begin{proposition}\label{img_singleton_iff} $b\in \img{R}{\{a\}}$ iff $a\mathrel{R}b$. \end{proposition} \begin{proposition}\label{img_singleton_intro} Suppose $b\in\img{R}{\{a\}}$. Then $b\in\ran{R}$ and $(a,b)\in R$. \end{proposition} \begin{proof} Follows by \cref{img_iff,singleton_iff,img_subseteq_ran,elem_subseteq}. \end{proof} \begin{proposition}\label{img_singleton} $\img{R}{\{a\}} = \{b\in\ran{R}\mid (a,b)\in R \}$. \end{proposition} \begin{proposition}\label{img_emptyset} $\img{R}{\emptyset} = \emptyset$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \subsection{Preimage} \begin{definition}\label{preimg} $\preimg{R}{B} = \{a\in\dom{R} \mid \exists b\in B. a\mathrel{R} b \}$. \end{definition} \begin{proposition}\label{preimg_iff} $a\in\preimg{R}{B}$ iff there exists $b\in B$ such that $a\mathrel{R} b$. \end{proposition} \begin{proposition}\label{preim_eq_img_of_converse} $\preimg{R}{B} = \img{\converse{R}}{B}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{preimg_subseteq} Suppose $A\subseteq B$. Then $\preimg{R}{A}\subseteq \preimg{R}{B}$. \end{proposition} \begin{proposition}\label{preimg_subseteq_dom} Then $\preimg{R}{A}\subseteq \dom{R}$. \end{proposition} \begin{proposition}\label{preimg_union} $\preimg{R}{A\union B} = \preimg{R}{A}\union\preimg{R}{B}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{preimg_inter} % Equality does not hold in general $\preimg{R}{A\inter B}\subseteq \preimg{R}{A}\inter\preimg{R}{B}$. \end{proposition} \begin{proposition}\label{preimg_setminus} % Equality does not hold in general $\preimg{R}{A\setminus B}\supseteq \preimg{R}{A}\setminus\preimg{R}{B}$. \end{proposition} \subsection{Upward and downward closure} \begin{definition}\label{upward_closure} $\upward{R}{a} = \{b\in\ran{R} \mid a\mathrel{R}b \}$. \end{definition} \begin{definition}\label{downward_closure} $\downward{R}{b} = \{a\in\dom{R} \mid a\mathrel{R}b \}$. \end{definition} \begin{proposition}\label{downward_closure_iff} $a\in\downward{R}{b}$ iff $a\mathrel{R}b$. \end{proposition} \subsection{Relation (and later also function) composition} Composition ignores the non-relational parts of sets. Note that the order is flipped from usual relation composition. This lets us use the same symbol for composition of functions. \begin{definition}\label{circ} $S\circ R = \{ (x,z)\mid x\in\dom{R}, z\in\ran{S}\mid \exists y.\ x\mathrel{R}y\mathrel{S}z \}$. \end{definition} \begin{proposition}\label{circ_is_relation} $S\circ R$ is a relation. \end{proposition} \begin{proposition}\label{circ_elem_intro} Suppose $x\mathrel{R} y\mathrel{S} z$. Then $x\mathrel{(S\circ R)} z$. \end{proposition} \begin{proof} $x\in\dom{R}$ and $z\in\ran{S}$. Then $(x, z)\in S\circ R$ by \cref{circ}. \end{proof} \begin{proposition}\label{circ_elem_elim} Suppose $x\mathrel{(S\circ R)} z$. Then there exists $y$ such that $x\mathrel{R} y\mathrel{S} z$. \end{proposition} \begin{proof} %$x\in\dom{R}$ and $z\in\ran{S}$. There exists $y$ such that $x\mathrel{R} y\mathrel{S} z$ by \cref{circ,pair_eq_iff}. Follows by assumption. \end{proof} \begin{proposition}\label{circ_iff} $x\mathrel{(S\circ R)} z$ iff there exists $y$ such that $x\mathrel{R} y\mathrel{S} z$. \end{proposition} \begin{proposition}\label{circ_assoc} $(T\circ S)\circ R = T\circ (S\circ R)$. \end{proposition} \begin{proof} For all $a, b$ we have $(a,b)\in (T\circ S)\circ R$ iff $(a,b)\in T\circ (S\circ R)$ by \cref{circ_iff}. Now $(T\circ S)\circ R$ is a relation and $T\circ (S\circ R)$ is a relation by \cref{circ_is_relation}. Follows by \hyperref[relext]{relation extensionality}. \end{proof} \begin{proposition}\label{circ_converse_intro_tuple} Suppose $(a, c) \in\converse{R}\circ\converse{S}$. Then $(a,c)\in \converse{(S\circ R)}$. \end{proposition} \begin{proof} Take $b$ such that $a\mathrel{\converse{S}} b\mathrel{\converse{R}} c$. Now $c\mathrel{R}b\mathrel{S} a$ by \cref{converse_iff}. Hence $c\mathrel{(S\circ R)} a$. Thus $a\mathrel{\converse{(S\circ R)}} c$. \end{proof} \begin{proposition}\label{circ_converse_elim} Suppose $(a,c)\in \converse{(S\circ R)}$. Then $(a, c) \in\converse{R}\circ\converse{S}$. \end{proposition} \begin{proof} $c\mathrel{(S\circ R)} a$. Take $b$ such that $c\mathrel{R}b\mathrel{S} a$. Now $a\mathrel{\converse{S}} b\mathrel{\converse{R}} c$. \end{proof} \begin{proposition}\label{circ_converse} $\converse{(S\circ R)} = \converse{R}\circ\converse{S}$. \end{proposition} \begin{proof} $\converse{(S\circ R)}$ is a relation. $\converse{R}\circ\converse{S}$ is a relation. For all $x, y $ we have $(x,y)\in \converse{(S\circ R)}$ iff $(x, y) \in\converse{R}\circ\converse{S}$. Thus $\converse{(S\circ R)} = \converse{R}\circ\converse{S}$ by \cref{relext}. \end{proof} \subsection{Restriction} \begin{definition}% \label{restrl} $\restrl{R}{X} = \{ w\in R \mid \exists x, y. x\in X \land w = (x, y) \}$. \end{definition} \begin{proposition}\label{restrl_iff} $a \mathrel{\restrl{R}{X}} b$ iff $a\mathrel{R}b$ and $a\in X$. \end{proposition} \begin{proposition}\label{restrl_subseteq} $\restrl{R}{X}\subseteq R$. \end{proposition} \begin{proposition}% \label{elem_dom_of_restrl_implies_elem_dom_and_restr} Suppose $x\in \dom{\restrl{R}{X}}$. Then $x\in \dom{R}, X$. \end{proposition} \begin{proof} Take $y$ such that $x\in X$ and $(x, y)\in \restrl{R}{X}$. Then $(x, y)\in R$. Thus $x\in\dom{R}$. \end{proof} \begin{proposition}% \label{elem_dom_and_restr_implies_elem_of_restr} Suppose $x\in \dom{R}, X$. Then $x\in \dom{\restrl{R}{X}}$. \end{proposition} \begin{proof} Take $y$ such that $(x, y)\in R$ by \cref{dom_iff}. Then $(x, y)\in \restrl{R}{X}$. Thus $x\in\dom{\restrl{R}{X}}$. \end{proof} \begin{proposition}\label{restrl_eq_inter} Suppose $R$ is a relation. $\restrl{R}{X} = R\inter (X\times \ran{R})$. \end{proposition} \begin{proof} For all $a$ we have $a\in R\inter (X\times \ran{R})$ iff $a\in \restrl{R}{X}$ by \cref{inter,restrl,ran_iff,times_elem_is_tuple,times_tuple_intro}. Follows by \hyperref[setext]{extensionality}. \end{proof} \begin{corollary}% \label{dom_of_restrl_eq_inter} Suppose $R$ is a relation. $\dom{\restrl{R}{X}} = \dom{R}\inter X$. \end{corollary} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{restrl_restrl} Suppose $V\subseteq U$. Then $\restrl{\restrl{R}{U}}{V} = \restrl{R}{V}$. \end{proposition} \begin{proof} For all $w$ we have $w\in\restrl{\restrl{R}{U}}{V}$ iff $w\in\restrl{R}{V}$ by \cref{restrl,subseteq}. Follows by \hyperref[setext]{extensionality}. \end{proof} \begin{proposition}\label{restrl_by_dom} Let $R$ be a relation. Then $\restrl{R}{\dom{R}} = R$. \end{proposition} \begin{proof} For all $w$ we have $w\in\restrl{R}{\dom{R}}$ iff $w\in R$ by \cref{dom,restrl,relation}. Follows by \hyperref[setext]{extensionality}. \end{proof} \begin{proposition}\label{restrl_dom} Then $\dom{\restrl{R}{X}}\subseteq X$. \end{proposition} \begin{proposition}\label{restrl_ran_elim} Suppose $X\subseteq\dom{R}$. Let $b\in\ran{\restrl{R}{X}}$. Then $b\in\img{R}{X}$. \end{proposition} \begin{proof} Take $a\in X$ such that $(a, b)\in \restrl{R}{X}$ by \cref{dom,ran,restrl_dom,subseteq}. Then $a\mathrel{R} b$ and $b\in\ran{R}$. Thus $b\in\img{R}{X}$ by \cref{img}. \end{proof} \begin{proposition}\label{restrl_ran_intro} Suppose $X\subseteq\dom{R}$. Let $b\in\img{R}{X}$. Then $b\in\ran{\restrl{R}{X}}$. \end{proposition} \begin{proof} Follows by \cref{img,ran_intro,restrl_iff}. \end{proof} \begin{proposition}\label{restrl_ran} Suppose $X\subseteq\dom{R}$. Then $\ran{\restrl{R}{X}} = \img{R}{X}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{restrl_img} Suppose $X\subseteq\dom{R}$. Then $\img{\restrl{R}{X}}{A} = \img{R}{X\inter A}$. \end{proposition} \begin{proof} For all $b$ we have $b\in\img{\restrl{R}{X}}{A}$ iff $b\in \img{R}{X\inter A}$ by \cref{restrl_iff,img_iff,inter}. Follows by \hyperref[setext]{extensionality}. %Follows by set extensionality. \end{proof} \subsection{Set of relations} % Also called "homogeneous relation" or "endorelation". \begin{abbreviation}\label{binary_relation_on} $R$ is a binary relation on $X$ iff $R\subseteq X\times X$. \end{abbreviation} \begin{proposition}\label{relation_subseteq_intro_elem} Let $R$ be a relation. Suppose $\ran{R}\subseteq B$. Suppose $\dom{R}\subseteq A$. Suppose $w\in R$. Then $w\in A\times B$. \end{proposition} \begin{proof} Take $a, b$ such that $(a, b) = w$. Then $a\in\dom{R}$ and $b\in\ran{R}$. Thus $a\in A$ and $b\in B$. Thus $(a, b)\in A\times B$. \end{proof} \begin{proposition}\label{relation_subseteq_intro} Let $R$ be a relation. Suppose $\ran{R}\subseteq B$. Suppose $\dom{R}\subseteq A$. Then $R\subseteq A\times B$. \end{proposition} \begin{proposition}\label{relation_subseteq_implies_dom_subseteq_elem} Suppose $R\subseteq A\times B$. Suppose $a\in\dom{R}$. Then $a\in A$. \end{proposition} \begin{proof} Take $w, b$ such that $w\in R$ and $w = (a, b)$. Follows by \cref{dom,times_tuple_elim,elem_subseteq}. \end{proof} \begin{proposition}\label{relation_subseteq_implies_dom_subseteq} Suppose $R\subseteq A\times B$. Then $\dom{R}\subseteq A$. \end{proposition} \begin{proof} Follows by \cref{subseteq,relation_subseteq_implies_dom_subseteq_elem}. \end{proof} \begin{proposition}\label{relation_subseteq_implies_ran_subseteq_elem} Suppose $R\subseteq A\times B$. Suppose $b\in\ran{R}$. Then $b\in B$. \end{proposition} \begin{proof} Take $w, a$ such that $w\in R$ and $w = (a, b)$. Follows by \cref{ran,elem_subseteq,times_tuple_elim}. \end{proof} \begin{proposition}\label{relation_subseteq_implies_ran_subseteq} Suppose $R\subseteq A\times B$. Then $\ran{R}\subseteq B$. \end{proposition} \begin{proof} Follows by \cref{subseteq,relation_subseteq_implies_ran_subseteq_elem}. \end{proof} \begin{definition}\label{rels} $\rels{A}{B} = \pow{A\times B}$. \end{definition} \begin{proposition}\label{rels_intro} Suppose $R\subseteq A\times B$. Then $R\in\rels{A}{B}$. \end{proposition} \begin{proposition}\label{rels_intro_dom_and_ran} Let $R$ be a relation. Suppose $\dom{R}\subseteq A$. Suppose $\ran{R}\subseteq B$. Then $R\in\rels{A}{B}$. \end{proposition} \begin{proof} $R\subseteq A\times B$. \end{proof} \begin{proposition}\label{rels_elim} Suppose $R\in\rels{A}{B}$. Then $R\subseteq A\times B$. \end{proposition} \begin{proposition}\label{rels_dom_subseteq} Suppose $R\in\rels{A}{B}$. Then $\dom{R}\subseteq A$. \end{proposition} \begin{proof} Follows by \cref{rels_elim,relation_subseteq_implies_dom_subseteq}. \end{proof} \begin{proposition}\label{rels_ran_subseteq} Suppose $R\in\rels{A}{B}$. Then $\ran{R}\subseteq B$. \end{proposition} \begin{proof} Follows by \cref{rels_elim,relation_subseteq_implies_ran_subseteq}. \end{proof} \begin{proposition}\label{rels_is_relation} Let $R\in\rels{A}{B}$. Then $R$ is a relation. \end{proposition} \begin{proof} It suffices to show that for all $w\in R$ there exists $x, y$ such that $w = (x, y)$. Fix $w\in R$. Now $R\subseteq A\times B$ by \cref{rels_elim}. Thus $w\in A\times B$. \end{proof} \begin{proposition}\label{rels_weaken_dom} Let $R\in\rels{A}{B}$. Suppose $A\subseteq C$. Then $R\in\rels{C}{B}$. \end{proposition} \begin{proof} $R\subseteq A\times B\subseteq C\times B$. Thus $R\subseteq C\times B$. \end{proof} \begin{proposition}\label{rels_weaken_codom} Let $R\in\rels{A}{B}$. Suppose $B\subseteq D$. Then $R\in\rels{A}{D}$. \end{proposition} \begin{proof} $R\subseteq A\times B\subseteq A\times D$. Thus $R\subseteq A\times D$. \end{proof} \begin{proposition}\label{rels_type} Let $R\in\rels{A}{B}$. Suppose $(a,b)\in R$. Then $(a,b)\in A\times B$. \end{proposition} \begin{proof} $R\subseteq A\times B$ by \cref{rels_elim}. \end{proof} \begin{proposition}\label{rels_type_dom} Let $R\in\rels{A}{B}$. Suppose $(a,b)\in R$. Then $a\in A$. \end{proposition} \begin{proof} $(a,b)\in A\times B$ by \cref{rels_type}. \end{proof} \begin{proposition}\label{rels_type_ran} Let $R\in\rels{A}{B}$. Suppose $(a,b)\in R$. Then $b\in B$. \end{proposition} \begin{proof} $(a,b)\in A\times B$ by \cref{rels_type}. \end{proof} \begin{proposition}\label{rels_restrict_dom} Let $R\in\rels{A}{B}$. Then $R\in\rels{\dom{R}}{B}$. \end{proposition} \begin{proof} $R$ is a relation by \cref{rels_is_relation}. $\dom{R}\subseteq \dom{R}$ by \cref{subseteq_refl}. $\ran{R}\subseteq B$. Follows by \cref{rels_intro_dom_and_ran}. \end{proof} \begin{proposition}\label{rels_restrict_ran} Let $R\in\rels{A}{B}$. Then $R\in\rels{A}{\ran{R}}$. \end{proposition} \begin{proof} $R$ is a relation by \cref{rels_is_relation}. $\dom{R}\subseteq A$. $\ran{R}\subseteq \ran{R}$ by \cref{subseteq_refl}. Follows by \cref{rels_intro_dom_and_ran}. \end{proof} \subsection{Identity relation} \begin{definition}\label{id} $\identity{A} = \{(a,a)\mid a\in A\}$. \end{definition} \begin{proposition}\label{id_iff} $a\mathrel{\identity{A}}b$ iff $a = b\in A$. \end{proposition} \begin{proof} Follows by \cref{id,pair_eq_iff}. \end{proof} \begin{proposition}\label{id_elem_intro} Suppose $a\in A$. Then $(a, a) \in\identity{A}$. \end{proposition} \begin{proof} Follows by \cref{id}. \end{proof} \begin{proposition}\label{id_elem_inspect} Suppose $w\in\identity{A}$. Then there exists $a\in A$ such that $w = (a, a)$. \end{proposition} \begin{proof} Follows by \cref{id}. \end{proof} \begin{proposition}\label{id_is_relation} $\identity{A}$ is a relation. \end{proposition} \begin{proposition}\label{id_dom} $\dom{\identity{A}} = A$. \end{proposition} \begin{proof} For every $a\in A$ we have $(a, a)\in \identity{A}$. $\dom{\identity{A}} = A$ by set extensionality. \end{proof} \begin{proposition}\label{id_ran} $\ran{\identity{A}} = A$. \end{proposition} \begin{proof} For every $a$ we have $a\in \ran{\identity{A}}$ iff $a\in A$ by \cref{ran_iff,id_iff}. For every $a\in A$ we have $(a, a)\in \identity{A}$. $\ran{\identity{A}} = A$ by set extensionality. \end{proof} \begin{proposition}\label{id_img} $\img{\identity{A}}{B} = A\inter B$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{id_elem_rels} $\identity{A}\in\rels{A}{A}$. \end{proposition} \subsection{Membership relation} \begin{definition}\label{memrel} $\memrel{A} = \{(a, b)\mid a\in A, b\in A \mid a\in b\}$. \end{definition} \begin{proposition}\label{memrel_elem_intro} Suppose $a, b\in A$. Suppose $a\in b$. Then $(a, b) \in\memrel{A}$. \end{proposition} \begin{proposition}\label{memrel_elem_inspect} Suppose $w\in\memrel{A}$. Then there exists $a, b\in A$ such that $w = (a, b)$ and $a\in b$. \end{proposition} \begin{proof} Follows by \cref{memrel}. \end{proof} \begin{proposition}\label{memrel_is_relation} $\memrel{A}$ is a relation. \end{proposition} \subsection{Subset relation} \begin{definition}\label{subseteqrel} $\subseteqrel{A} = \{(a, b)\mid a\in A, b\in A \mid a\subseteq b\}$. \end{definition} \begin{proposition}\label{subseteqrel_is_relation} $\subseteqrel{A}$ is a relation. \end{proposition}