\import{relation/properties.tex} \import{relation/equivalence.tex} \subsection{Closure operations on relations} \begin{definition}\label{reflexive_closure} $\reflexiveClosure{X}{R} = R\union\identity{X}$. \end{definition} % reflexive closure of R is the smallest reflexive relation containing R \begin{proposition}\label{reflexive_closure_is_reflexive} $\reflexiveClosure{X}{R}$ is reflexive on $X$. \end{proposition} \begin{definition}\label{reflexive_reduction} $\reflexiveReduction{X}{R} = R\setminus\identity{X}$. \end{definition} \begin{definition}\label{symmetric_closure} $\symmetricClosure{R} = R\union\converse{R}$. \end{definition} % LATER transitive closure % LATER reflexive transitive closure % LATER equivalence closure