\import{set.tex} \import{set/partition.tex} \import{relation.tex} \import{order/quasiorder.tex} \subsection{Equivalences} % Sometimes also called "restricted equivalence". \begin{abbreviation}\label{partialequivalence} $E$ is a partial equivalence iff $E$ is transitive and symmetric. \end{abbreviation} \begin{proposition}\label{partialequivalence_is_quasireflexive} Let $E$ be a partial equivalence. Then $E$ is quasireflexive. \end{proposition} \begin{abbreviation}\label{equivalence} $E$ is an equivalence iff $E$ is a symmetric quasiorder. \end{abbreviation} \begin{abbreviation}\label{equivalence_on} $E$ is an equivalence on $A$ iff $E$ is a symmetric quasiorder on $A$. \end{abbreviation} \begin{proposition}\label{inters_of_family_of_equivalences_is_equivalence} Let $F$ be a family of relations. Suppose every element of $F$ is an equivalence. Then $\inters{F}$ is an equivalence. \end{proposition} \begin{proof} $\inters{F}$ is quasireflexive by \cref{quasireflexive,inters_destr,inters_iff_forall}. $\inters{F}$ is symmetric by \cref{symmetric,inters_iff_forall,inters_destr}. $\inters{F}$ is transitive by \cref{transitive,inters_iff_forall,inters_destr}. \end{proof} \begin{proposition}\label{inters_of_family_of_equivalences_on_a_set_is_equivalence_on_that_set} Let $F$ be an inhabited family of relations. Suppose every element of $F$ is an equivalence on $A$. Then $\inters{F}$ is an equivalence on $A$. \end{proposition} \begin{proof} $\inters{F}$ is reflexive on $A$ by \cref{inters_of_family_of_reflexive_relations_is_reflexive}. $\inters{F}$ is symmetric. $\inters{F}$ is transitive. \end{proof} % NOTE: the union of a family of equivalence relations is not necessarily an % equivalence relation because a binary union of transitive relations is not % necessarily transitive. \subsubsection{Equivalence classes} \begin{abbreviation}\label{equiv_class} $\equivalenceClass{E}{a} = \downward{E}{a}$. \end{abbreviation} \begin{abbreviation}\label{equivclass_abbr} The $E$-equivalence class of $a$ is $\equivalenceClass{E}{a}$. \end{abbreviation} \begin{proposition}\label{equivclasses_inhabited} Let $E$ be an equivalence. Let $a\in \fld{E}$. Then $a\in\equivalenceClass{E}{a}$. \end{proposition} \begin{proof} $a\mathrel{E} a$ by \cref{reflexive_on,quasireflexive_implies_reflexive_on_fld}. \end{proof} \begin{proposition}\label{equivclasses_inhabited_equivalenceon} Let $E$ be an equivalence on $A$. Let $a\in A$. Then $a\in\equivalenceClass{E}{a}$. \end{proposition} \begin{proof} $a\mathrel{E} a$ by \cref{reflexive_on}. \end{proof} \begin{proposition}\label{equiv_implies_equivanlence_classes_eq} Let $E$ be an equivalence on $A$. Let $a, b\in A$. Suppose $a\mathrel{E} b$. Then $\equivalenceClass{E}{a} = \equivalenceClass{E}{b}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{equivclasses_eq_implies_equiv} Let $E$ be an equivalence on $A$. Let $a, b\in A$. Suppose $\equivalenceClass{E}{a} = \equivalenceClass{E}{b}$. Then $a\mathrel{E} b$. \end{proposition} \begin{proposition}\label{equiv_iff_equivclasses_eq} Let $E$ be an equivalence on $A$. Let $a, b\in A$. Then $a\mathrel{E} b$ iff $\equivalenceClass{E}{a} = \equivalenceClass{E}{b}$. \end{proposition} \begin{proposition}\label{equivclasses_diseq_implies_disjoint} Let $E$ be a partial equivalence. Suppose $\equivalenceClass{E}{a}\neq \equivalenceClass{E}{b}$. Then $\equivalenceClass{E}{a}$ is disjoint from $\equivalenceClass{E}{b}$. \end{proposition} \begin{proof} Suppose not. Take $c$ such that $c\in \equivalenceClass{E}{a},\equivalenceClass{E}{b}$. Then $c\mathrel{E} a$ and $c\mathrel{E} b$. $E$ is symmetric. Thus $a\mathrel{E} c$ by \hyperref[symmetric]{symmetry}. $E$ is transitive. Thus $a\mathrel{E} b$ by \hyperref[transitive]{transitivity}. Then $b\mathrel{E} a$ by \hyperref[symmetric]{symmetry}. % Thus $a\in \equivalenceClass{E}{b}$ and $b\in \equivalenceClass{E}{a}$ by \cref{downward_closure_iff}. Hence $\equivalenceClass{E}{a}\subseteq \equivalenceClass{E}{b}\subseteq \equivalenceClass{E}{a}$ by \cref{transitive_downward_subseteq}. Contradiction by \cref{subseteq_antisymmetric}. \end{proof} \begin{corollary}\label{equivalence_equivclasses_diseq_implies_disjoint} Let $E$ be an equivalence. Suppose $\equivalenceClass{E}{a}\neq \equivalenceClass{E}{b}$. Then $\equivalenceClass{E}{a}$ is disjoint from $\equivalenceClass{E}{b}$. \end{corollary} \begin{proof} Follows by \cref{equivclasses_diseq_implies_disjoint}. \end{proof} \begin{corollary}\label{equivalenceon_equivclasses_diseq_implies_disjoint} Let $E$ be an equivalence on $A$. Suppose $\equivalenceClass{E}{a}\neq \equivalenceClass{E}{b}$. Then $\equivalenceClass{E}{a}$ is disjoint from $\equivalenceClass{E}{b}$. \end{corollary} \begin{proof} Follows by \cref{equivclasses_diseq_implies_disjoint}. \end{proof} \subsubsection{Quotients} \begin{definition}\label{quotient} $\quotient{A}{E} = \{\equivalenceClass{E}{a}\mid a\in A\}$. \end{definition} %\begin{definition}\label{equivalenceclasses} % $\equivalenceClasses{E} = \{\equivalenceClass{E}{a}\mid a\in\dom{E}\}$. %\end{definition} \begin{proposition}\label{quotient_emptyset} $\quotient{\emptyset}{\emptyset} = \emptyset$. \end{proposition} \begin{proposition}\label{quotient_elems_disjoint} Let $E$ be an equivalence on $A$. Suppose $B,C\in\quotient{A}{E}$ and $B\neq C$. Then $B$ is disjoint from $C$. \end{proposition} \begin{proof} Take $b$ such that $B = \equivalenceClass{E}{b}$. Take $c$ such that $C = \equivalenceClass{E}{c}$. Then $B$ is disjoint from $C$ by \cref{equivalenceon_equivclasses_diseq_implies_disjoint}. \end{proof} \begin{proposition}\label{quotient_elems_inhabited} Let $E$ be an equivalence on $A$. Suppose $C\in\quotient{A}{E}$. Then $C$ is inhabited. \end{proposition} \begin{proof} Take $a\in A$ such that $C = \equivalenceClass{E}{a}$. Then $a\in \equivalenceClass{E}{a}$. $C$ is inhabited by \cref{quotient,equivclasses_inhabited}. \end{proof} \begin{proposition}\label{quotient_elems_type} Let $E$ be an equivalence on $A$. Suppose $a\in C\in\quotient{A}{E}$. Then $a\in A$. \end{proposition} \begin{proof} Take $b\in A$ such that $C = \equivalenceClass{E}{b}$ by \cref{quotient}. Then $a\mathrel{E} b$. Thus $a\in A$ by \cref{times_tuple_elim,subseteq}. \end{proof} \begin{corollary}\label{quotient_notni_emptyset} Let $E$ be an equivalence on $A$. $\emptyset\notin\quotient{A}{E}$. \end{corollary} \begin{proposition}\label{quotient_partition} Let $E$ be an equivalence on $A$. $\quotient{A}{E}$ is a partition. \end{proposition} \begin{proof} $\emptyset\notin\quotient{A}{E}$. For all $B, C\in \quotient{A}{E}$ such that $B\neq C$ we have $B$ is disjoint from $C$. \end{proof} \begin{proposition}\label{quotient_partition_of} Let $E$ be an equivalence on $A$. $\quotient{A}{E}$ is a partition of $A$. \end{proposition} \begin{proof} $\unions{(\quotient{A}{E})} = A$ by set extensionality. \end{proof} \begin{definition}\label{equivalence_from_partition} $\equivfrompartition{P}{A} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$. \end{definition} \begin{proposition}\label{equivalence_from_partition_intro} Let $P$ be a partition of $A$. Let $a,b\in A$. Suppose $a,b\in C\in P$. Then $a\mathrel{\equivfrompartition{P}{A}} b$. \end{proposition} \begin{proposition}\label{equivalence_from_partition_reflexive} Let $P$ be a partition of $A$. $\equivfrompartition{P}{A}$ is reflexive on $A$. \end{proposition} \begin{proposition}\label{equivalence_from_partition_symmetric} Let $P$ be a partition. $\equivfrompartition{P}{A}$ is symmetric. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{equivalence_from_partition_transitive} Let $P$ be a partition. $\equivfrompartition{P}{A}$ is transitive. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{equivalence_from_partition_is_equivalence} Let $P$ be a partition of $A$. $\equivfrompartition{P}{A}$ is an equivalence on $A$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{equivalence_from_quotient} Let $E$ be an equivalence on $A$. Then $\equivfrompartition{\quotient{A}{E}}{A} = E$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition} Let $P$ be a partition of $A$. Then $\quotient{A}{\equivfrompartition{P}{A}} = P$. \end{proposition} \begin{proof} Omitted. \end{proof}