\import{set.tex} \import{relation.tex} \subsection{Properties of relations} \begin{definition}\label{left_quasireflexive} $R$ is left quasireflexive iff for all $x, y$ such that $x\mathrel{R} y$ we have $x\mathrel{R}x$. \end{definition} \begin{definition}\label{right_quasireflexive} $R$ is right quasireflexive iff for all $x, y$ such that $x\mathrel{R} y$ we have $y\mathrel{R}y$. \end{definition} \begin{definition}\label{quasireflexive} $R$ is quasireflexive iff for all $x, y$ such that $x\mathrel{R} y$ we have $x\mathrel{R}x$ and $y\mathrel{R}y$. \end{definition} \begin{definition}\label{coreflexive} $R$ is coreflexive iff for all $x, y$ such that $x\mathrel{R} y$ we have $x = y$. \end{definition} \begin{definition}\label{reflexive_on} $R$ is reflexive on $X$ iff for all $x\in X$ we have $x\mathrel{R}x$. \end{definition} \begin{definition}\label{irreflexive} $R$ is irreflexive iff for all $x$ we have $(x,x)\notin R$. \end{definition} \begin{proposition}\label{quasireflexive_implies_reflexive_on_fld} Suppose $R$ is quasireflexive. Then $R$ is reflexive on $\fld{R}$. \end{proposition} \begin{proposition}\label{reflexive_on_fld_impliesquasireflexive} Suppose $R$ is reflexive on $\fld{R}$. Then $R$ is quasireflexive. \end{proposition} \begin{proposition}\label{inters_of_family_of_reflexive_relations_is_reflexive} Let $F$ be an inhabited family of relations. Suppose every element of $F$ is reflexive on $A$. Then $\inters{F}$ is reflexive on $A$. \end{proposition} \begin{proof} For all $a\in A$ we have for all $R\in F$ we have $a\mathrel{R} a$. Thus for all $a\in A$ we have $a\mathrel{(\inters{F})} a$. \end{proof} \begin{definition}\label{antisymmetric} $R$ is antisymmetric iff for all $x, y$ such that $x\mathrel{R}y\mathrel{R}x$ we have $x = y$. \end{definition} \begin{definition}[Symmetry]\label{symmetric} $R$ is symmetric iff for all $x, y$ we have $x\mathrel{R} y \iff y\mathrel{R}x$. \end{definition} \begin{definition}\label{asymmetric} $R$ is asymmetric iff for all $x, y$ such that $x\mathrel{R} y$ we have $y\not\mathrel{R}x$. \end{definition} \begin{proposition}\label{asymmetric_implies_irreflexive} Suppose $R$ is asymmetric. Then $R$ is irreflexive. \end{proposition} \begin{proposition}\label{asymmetric_implies_antisymmetric} Suppose $R$ is asymmetric. Then $R$ is antisymmetric. \end{proposition} \begin{proposition}\label{antisymmetric_and_irreflexive_implies_asymmetric} Suppose $R$ is antisymmetric. Suppose $R$ is irreflexive. Then $R$ is asymmetric. \end{proposition} % TODO %\begin{proposition}\label{symmetric_relation_eq_converse} % Let $R$ be a symmetric relation. % Then $\converse{R} = R$. %\end{proposition} %\begin{proof} % Follows by set extensionality. %\end{proof} \begin{definition}[Transitivity]\label{transitive} $R$ is transitive iff for all $x, y, z$ such that $x\mathrel{R}y\mathrel{R}z$ we have $x\mathrel{R} z$. \end{definition} \begin{proposition}\label{transitive_downward_elem} Suppose $R$ is transitive. Suppose $a\in\downward{R}{b}$. Suppose $c\in\downward{R}{a}$. Then $c\in \downward{R}{b}$. \end{proposition} \begin{proof} $c\mathrel{R} a\mathrel{R}b$. Thus $c\mathrel{R} b$ by \hyperref[transitive]{transitivity}. \end{proof} \begin{proposition}\label{transitive_downward_subseteq} Suppose $R$ is transitive. Suppose $a\in\downward{R}{b}$. Then $\downward{R}{a}\subseteq \downward{R}{b}$. \end{proposition} \begin{definition}\label{dense} $R$ is dense iff for all $x, z$ such that $x\mathrel{R}z$ there exists $y$ such that $x\mathrel{R}y\mathrel{R}z$. \end{definition} % Variation of connexity that does not depend on a carrier. \begin{definition}\label{quasiconnex} $R$ is quasiconnex iff for all $x, y\in\fld{R}$ such that $x\neq y$ we have $x\mathrel{R}y$ or $y\mathrel{R}x$. \end{definition} % Also called "connected" (here reserved for topology), % "complete" (heavily overloaded), and total" (also overloaded). \begin{definition}\label{connex} $R$ is connex on $X$ iff for all $x, y\in X$ such that $x\neq y$ we have $x\mathrel{R}y$ or $y\mathrel{R}x$. \end{definition} \begin{definition}\label{strongly_quasiconnex} $R$ is strongly quasiconnex iff for all $x, y\in\fld{R}$ we have $x\mathrel{R}y$ or $y\mathrel{R}x$. \end{definition} \begin{definition}\label{strongly_connex} $R$ is strongly connex on $X$ iff for all $x, y\in X$ we have $x\mathrel{R}y$ or $y\mathrel{R}x$. \end{definition} %\begin{proposition}\label{strongly_quasiconnex_implies_quasiconnex_and_quasireflexive} % Suppose $R$ is strongly quasiconnex. % Then $R$ is quasiconnex and quasireflexive. %\end{proposition} %\begin{proposition}\label{quasiconnex_and_quasireflexive_implies_strongly_quasiconnex} % Suppose $R$ is quasiconnex and quasireflexive. % Then $R$ is strongly quasiconnex. %\end{proposition} \begin{proposition}\label{strongly_quasiconnex_iff_quasiconnex_and_quasireflexive} $R$ is strongly quasiconnex iff $R$ is quasiconnex and quasireflexive. \end{proposition} \begin{proof} Follows by \cref{quasiconnex,strongly_quasiconnex,quasireflexive_implies_reflexive_on_fld,reflexive_on,fld,reflexive_on_fld_impliesquasireflexive}. \end{proof} \begin{proposition}\label{connex_reaches_all_or_all_but_one} Suppose $R$ is connex on $A$. Let $a, b\in A\setminus\ran{R}$. Then $a = b$. \end{proposition} \begin{proof} Suppose not. $a, b\in A$. Then $(a, b)\in R$ or $(b,a)\in R$ by \cref{connex}. $(a, b)\notin R$. $(b, a)\notin R$. Thus $a = b$. \end{proof} \begin{definition}\label{righteuclidean} $R$ is right Euclidean iff for all $a,b,c$ such that $a\mathrel{R}b,c$ we have $b\mathrel{R}c$. \end{definition} \begin{definition}\label{lefteuclidean} $R$ is left Euclidean iff for all $a,b,c$ such that $a,b\mathrel{R}c$ we have $a\mathrel{R}b$. \end{definition}