\import{set.tex} \import{relation.tex} \subsection{Injective relations} % Injective relations are also called "left-unique" \begin{definition}\label{injective} $R$ is injective iff for all $a,a',b$ such that $a, a'\mathrel{R} b$ we have $a = a'$. \end{definition} \begin{abbreviation}\label{leftunique} $R$ is left-unique iff $R$ is injective. \end{abbreviation} \begin{proposition}\label{subseteq_of_injective_is_injective} Suppose $S\subseteq R$. Suppose $R$ is injective. Then $S$ is injective. \end{proposition} \begin{proposition}\label{restrl_injective} Suppose $R$ is injective. Then $\restrl{R}{A}$ is injective. \end{proposition} \begin{proof} $\restrl{R}{A}\subseteq R$. \end{proof} \begin{proposition}\label{circ_injective} Suppose $R$ and $S$ are injective. Then $S\circ R$ is injective. \end{proposition} \begin{proposition}\label{identity_injective} Then $\identity{A}$ is injective. \end{proposition} \subsection{Right-unique relations} % also called "functional" or "univalent" \begin{definition}\label{rightunique} $R$ is right-unique iff for all $a,b,b'$ such that $a\mathrel{R} b, b'$ we have $b = b'$. \end{definition} \begin{abbreviation}\label{onetoone} $R$ is one-to-one iff $R$ is right-unique and injective. \end{abbreviation} \begin{proposition}\label{subseteq_of_rightunique_is_rightunique} Suppose $S\subseteq R$. Suppose $R$ is right-unique. Then $S$ is right-unique. \end{proposition} \begin{proposition}\label{circ_rightunique} Suppose $R$ and $S$ are right-unique. Then $S\circ R$ is right-unique. \end{proposition} \subsection{Left-total relations} \begin{definition}\label{lefttotal} $R$ is left-total on $A$ iff for all $a\in A$ there exists $b$ such that $a\mathrel{R} b$. \end{definition} \subsection{Right-total relations} \begin{definition}\label{righttotal} $R$ is right-total on $B$ iff for all $b\in B$ there exists $a$ such that $a\mathrel{R} b$. \end{definition} \begin{abbreviation}\label{surjective} $R$ is surjective on $B$ iff $R$ is right-total on $B$. \end{abbreviation}