% The theory of splitting sets into two (inhabited, disjoint) partitions. % See also "bisections" here: https://isarmathlib.org/Partitions_ZF.html \import{set.tex} \import{set/cons.tex} \import{set/powerset.tex} \subsection{Bipartitions} \begin{abbreviation}\label{bipartitions} $C$ is partitioned by $A$ and $B$ iff $A,B\neq\emptyset$ and $A$ is disjoint from $B$ and $A\union B = C$. \end{abbreviation} \begin{definition}\label{bipartitions_of_a_set} $\bipartitions{X} = \{ p\in\pow{X}\times\pow{X}\mid \text{$X$ is partitioned by $\fst{p}$ and $\snd{p}$}\}$. \end{definition} \begin{abbreviation}\label{is_a_bipartition_of} $P$ is a bipartition of $X$ iff $P\in\bipartitions{X}$. \end{abbreviation} \begin{proposition}\label{bipartition_intro} Suppose $C$ is partitioned by $A$ and $B$. Then $(A, B)$ is a bipartition of $C$. \end{proposition} \begin{proof} $(A,B)\in\pow{C}\times\pow{C}$. $C$ is partitioned by $\fst{(A,B)}$ and $\snd{(A,B)}$. Thus $(A, B)$ is a bipartition of $C$ by \cref{bipartitions_of_a_set}. \end{proof} \begin{proposition}\label{bipartition_elim} Suppose $(A, B)$ is a bipartition of $C$. Then $C$ is partitioned by $A$ and $B$. \end{proposition} \begin{proof} $\fst{(A, B)} = A$. $\snd{(A, B)} = B$. \end{proof} \begin{proposition}\label{bipartitions_emptyset} $\bipartitions{\emptyset}$ is empty. \end{proposition} \begin{proposition}\label{union_eq_cons_implies_union_remove_eq} Suppose $d\notin C$. Suppose $A\union B = \cons{d}{C}$. Suppose $A, B\neq \{d\}$. Then $\remove{d}{A}\union \remove{d}{B} = C$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{bipartitions_cons} Suppose $d\notin C$. Suppose $\cons{d}{C}$ is partitioned by $A$ and $B$. Suppose $A, B\neq \{d\}$. Then $C$ is partitioned by $\remove{d}{A}$ and $\remove{d}{B}$. \end{proposition} \begin{proof} $\remove{d}{A},\remove{d}{B}\neq\emptyset$. $\remove{d}{A}\union \remove{d}{B} = C$ by \cref{union_eq_cons_implies_union_remove_eq}. \end{proof} % TODO %\begin{proposition}\label{singleton_bipartition} % Suppose $b\notin A$. % Suppose $A$ and $\{b\}$ bipartition $\cons{b}{C}$. % Then $A = C$. %\end{proposition}