\import{set/powerset.tex} \import{function.tex} \subsection{Cantor's theorem} \begin{theorem}[Cantor]\label{cantor} There exists no surjection from $A$ to $\pow{A}$. \end{theorem} \begin{proof} Suppose not. Consider a surjection $f$ from $A$ to $\pow{A}$. Let $B = \{a \in A \mid a\notin f(a)\}$. Then $B\in\pow{A}$. There exists $a'\in A$ such that $f(a') = B$ by \hyperref[surj]{the definition of surjectivity}. Now $a' \in B$ iff $a' \notin f(a') = B$. Contradiction. \end{proof}