\import{set.tex} \subsection{Additional results about cons} \begin{proposition}\label{cons_subseteq_intro} Suppose $x\in X$. Suppose $Y\subseteq X$. Then $\cons{x}{Y}\subseteq X$. \end{proposition} \begin{proposition}\label{cons_subseteq_elim} Suppose $\cons{x}{Y}\subseteq X$. Then $x\in X$ and $Y\subseteq X$. \end{proposition} \begin{proposition}\label{cons_subseteq_iff} $\cons{x}{Y}\subseteq X$ iff $x\in X$ and $Y\subseteq X$. \end{proposition} \begin{proposition}\label{subseteq_cons_right} If $C\subseteq B$, then $C\subseteq \cons{a}{B}$. \end{proposition} \begin{corollary}\label{subseteq_cons_self} $X\subseteq \cons{y}{X}$. \end{corollary} \begin{abbreviation}\label{remove_point} $\remove{a}{B} = B\setminus\{a\}$. \end{abbreviation} \begin{proposition}\label{subseteq_cons_intro_left} Suppose $a\in C \land \remove{a}{C} \subseteq B$. Then $C\subseteq \cons{a}{B}$. \end{proposition} \begin{proof} Follows by \cref{setminus_cons,setminus_eq_emptyset_iff_subseteq}. \end{proof} \begin{proposition}\label{subseteq_cons_intro_right} Suppose $C \subseteq B$. Then $C\subseteq \cons{a}{B}$. \end{proposition} \begin{proposition}\label{subseteq_cons_elim} Suppose $C\subseteq \cons{a}{B}$. Then $C\subseteq B \lor (a\in C \land \remove{a}{C} \subseteq B)$. \end{proposition} \begin{proof} Follows by \cref{setminus_cons,subseteq,cons_iff,setminus_eq_emptyset_iff_subseteq}. \end{proof} \begin{proposition}\label{subseteq_cons_iff} $C\subseteq \cons{a}{B}$ iff $C\subseteq B \lor (a\in C \land \remove{a}{C}\subseteq B)$. \end{proposition} \begin{proposition}\label{remove_point_eq_setminus_singleton} $\remove{a}{B} = B\setminus\{a\}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{union_eq_cons} $\{a\}\union B = \cons{a}{B}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{cons_comm} $\cons{a}{\cons{b}{C}} = \cons{b}{\cons{a}{C}}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{cons_absorb} Suppose $a\in A$. Then $\cons{a}{A} = A$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{cons_remove} Suppose $a\in A$. Then $\cons{a}{A\setminus\{a\}} = A$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{cons_idempotent} Then $\cons{a}{\cons{a}{B}} = \cons{a}{B}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{inters_cons} Suppose $B$ is inhabited. Then $\inters{\cons{a}{B}} = a\inter\inters{B}$. \end{proposition} \begin{proof} $\cons{a}{B}$ is inhabited. Thus for all $c$ we have $c\in\inters{\cons{a}{B}}$ iff $c\in a\inter \inters{B}$ by \cref{inters_iff_forall,cons_iff,inter}. Follows by \hyperref[setext]{extensionality}. \end{proof}