\import{set/powerset.tex} \import{set/fixpoint.tex} \import{function.tex} \begin{definition}\label{equinum} $A$ is equinumerous with $B$ iff there exists a bijection from $A$ to $B$. \end{definition} \begin{abbreviation}\label{approx} $A\approx B$ iff $A$ is equinumerous with $B$. \end{abbreviation} \begin{proposition}\label{equinum_refl} $A\approx A$. \end{proposition} \begin{proof} $\identity{A}$ is a bijection from $A$ to $A$. %by \cref{id_is_bijection}. Follows by \cref{equinum}. \end{proof} \begin{proposition}\label{equinum_sym} Suppose $A\approx B$. Then $B\approx A$. \end{proposition} \begin{proof} Take a bijection $f$ from $A$ to $B$ by \cref{equinum}. Then $\converse{f}$ is a bijection from $B$ to $A$ by \cref{bijection_converse_is_bijection}. Follows by \cref{equinum}. \end{proof} \begin{proposition}\label{equinum_tran} Suppose $A\approx B\approx C$. Then $A\approx C$. \end{proposition} \begin{proof} Take a bijection $f$ from $A$ to $B$ by \cref{equinum}. Take a bijection $g$ from $B$ to $C$ by \cref{equinum}. Then $g\circ f$ is a bijection from $A$ to $C$ by \cref{bijection_circ}. Follows by \cref{equinum}. \end{proof} \begin{theorem}[Cantor--Schröder--Bernstein]\label{cantorschroederbernstein} Let $f$ be an injective function from $A$ to $B$. Let $g$ be an injective function from $B$ to $A$. Then $A\approx B$. \end{theorem} \begin{proof} Let $h(X) = A\setminus \img{g}{B\setminus\img{f}{X}}$ for $X\in\pow{A}$. %By construction: $h$ is a relation. %By construction: $h$ is right-unique. %By construction: $\dom{h} = \pow{A}$. For all $X\in\pow{A}$ we have $h(X)\in\pow{A}$ by \cref{setminus_subseteq,pow_iff}. Thus $h$ is a function from $\pow{A}$ to $\pow{A}$. $h$ is \subseteq-preserving by \cref{subseteqpreserving,img_subseteq,subseteq_implies_setminus_supseteq}. % apply each each lemma twice (alternating). Take a fixpoint $X$ of $h$ by \cref{knastertarski}. Now $X = A\setminus \img{g}{B\setminus\img{f}{X}}$ by \cref{fixpoint}. $\img{g}{B\setminus\img{f}{X}}\subseteq A$. Thus $\img{g}{B\setminus\img{f}{X}} = A\setminus X$ by \cref{double_relative_complement}. Let $h' = \restrl{h}{X}$. Omitted. % TODO \end{proof}