\import{set.tex} \import{set/powerset.tex} \section{Filters} \subsection{Definition and basic properties of filters} \begin{abbreviation}\label{upwardclosed} $F$ is upward-closed in $S$ iff for all $A, B$ such that $A\subseteq B\subseteq S$ and $A\in F$ we have $B\in F$. \end{abbreviation} \begin{definition}\label{filter} $F$ is a filter on $S$ iff $F$ is a family of subsets of $S$ and $S\in F$ and $\emptyset\notin F$ and $F$ is closed under binary intersections and $F$ is upward-closed in $S$. \end{definition} \begin{proposition}\label{filter_ext_complement} Let $F, G$ be filters on $S$. Suppose for all $A\subseteq S$ we have $S\setminus A\in F$ iff $S\setminus A\in G$. Then $F = G$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{filter_inter_in_iff} Let $F$ be a filter on $S$. Suppose $A, B\subseteq S$. Then $A\inter B\in F$ iff $A, B\in F$. \end{proposition} \begin{proof} We have $A\inter B\subseteq A, B$. Follows by \cref{filter}. \end{proof} \subsection{Principal filters over a set} \begin{definition}\label{principalfilter} $\principalfilter{S}{A} = \{X\in\pow{S}\mid A\subseteq X\}$. \end{definition} \begin{proposition}\label{principalfilter_is_filter} Suppose $A\subseteq S$. Suppose $A$ is inhabited. Then $\principalfilter{S}{A}$ is a filter on $S$. \end{proposition} \begin{proof} $S$ is inhabited. % since $A$ is inhabited and $A\subseteq S$. $\principalfilter{S}{A}$ is a family of subsets of $S$. $S\in \principalfilter{S}{A}$. $\emptyset\notin \principalfilter{S}{A}$. $\principalfilter{S}{A}$ is closed under binary intersections. $\principalfilter{S}{A}$ is upward-closed in $S$. Follows by \cref{filter}. \end{proof} \begin{proposition}\label{principalfilter_elem_generator} Suppose $A\subseteq S$. $A\in\principalfilter{S}{A}$. \end{proposition} \begin{proof} $A\in\pow{S}$. \end{proof} \begin{proposition}\label{principalfilter_notelem_implies_notsupseteq} Let $X\in\pow{S}$. Suppose $X\notin\principalfilter{S}{A}$. Then $A\not\subseteq X$. \end{proposition} \begin{proof} \end{proof} \begin{definition}\label{maximalfilter} $F$ is a maximal filter on $S$ iff $F$ is a filter on $S$ and there exists no filter $F'$ on $S$ such that $F\subset F'$. \end{definition} \begin{proposition}\label{principalfilter_singleton_is_filter} Suppose $a\in S$. Then $\principalfilter{S}{\{a\}}$ is a filter on $S$. \end{proposition} \begin{proof} $\{a\}\subseteq S$. $\{a\}$ is inhabited. Follows by \cref{principalfilter_is_filter}. \end{proof} \begin{proposition}\label{principalfilter_singleton_is_maximal_filter} Suppose $a\in S$. Then $\principalfilter{S}{\{a\}}$ is a maximal filter on $S$. \end{proposition} \begin{proof} $\{a\}\subseteq S$. $\{a\}$ is inhabited. Thus $\principalfilter{S}{\{a\}}$ is a filter on $S$ by \cref{principalfilter_is_filter}. It suffices to show that there exists no filter $F'$ on $S$ such that $\principalfilter{S}{\{a\}}\subset F'$. Suppose not. Take a filter $F'$ on $S$ such that $\principalfilter{S}{\{a\}}\subset F'$. Take $X\in F'$ such that $X\notin \principalfilter{S}{\{a\}}$. $X\in\pow{S}$. Thus $\{a\}\not\subseteq X$ by \cref{principalfilter_notelem_implies_notsupseteq}. Thus $a\notin X$. $\{a\}\in F'$ % TODO clean by \cref{principalfilter,elem_subseteq,union_intro_left,subset,union_absorb_subseteq_left,subseteq_refl,powerset_intro}. Thus $\emptyset = X\inter \{a\}$. Hence $\emptyset\in F'$ by \cref{filter}. Follows by \hyperref[filter]{contradiction to the definition of a filter}. \end{proof}