\import{set/powerset.tex} \import{function.tex} \subsection{Fixpoints} % NOTE: we need to explicitly require that a is an element of the domain, % otherwise the emptyset becomes a fixpoint when it's not in the domain. \begin{definition}\label{fixpoint} $a$ is a fixpoint of $f$ iff $a\in\dom{f}$ and $f(a) = a$. \end{definition} \begin{definition}\label{subseteqpreserving} $f$ is \subseteq-preserving iff for all $A, B\in\dom{f}$ such that $A\subseteq B$ we have $f(A)\subseteq f(B)$. \end{definition} \begin{theorem}[Knaster--Tarski]\label{knastertarski} Let $f$ be a \subseteq-preserving function from $\pow{A}$ to $\pow{A}$. Then there exists a fixpoint of $f$. \end{theorem} \begin{proof} $\dom{f} = \pow{A}$. Let $P = \{a\in\pow{A}\mid a\subseteq f(a)\}$. $P\subseteq\pow{A}$. Thus $\unions{P}\in\pow{A}$. Hence $f(\unions{P})\in\pow{A}$ by \cref{funs_type_apply}. Show $\unions{P}\subseteq f(\unions{P})$. \begin{subproof} It suffices to show that every element of $\unions{P}$ is an element of $f(\unions{P})$. % Fix $u\in\unions{P}$. % Take $p\in P$ such that $u\in p$. Then $u\in f(p)$. $p\subseteq\unions{P}$. $f(p)\subseteq f(\unions{P})$ by \cref{subseteqpreserving}. Thus $u\in f(\unions{P})$. \end{subproof} Now $f(\unions{P})\subseteq f(f(\unions{P}))$ by \cref{subseteqpreserving}. Thus $f(\unions{P})\in P$ by definition. Hence $f(\unions{P})\subseteq \unions{P}$. Thus $f(\unions{P}) = \unions{P}$ by \cref{subseteq_antisymmetric}. Follows by \cref{fixpoint}. \end{proof}