\import{set.tex} \subsection{Partitions} \begin{definition}\label{partition} $P$ is a partition iff $\emptyset\notin P$ and for all $B, C\in P$ such that $B\neq C$ we have $B$ is disjoint from $C$. \end{definition} \begin{abbreviation}\label{partition_of} $P$ is a partition of $A$ iff $P$ is a partition and $\unions{P} = A$. \end{abbreviation} \begin{proposition}\label{partition_emptyset} $\emptyset$ is a partition of $\emptyset$. \end{proposition} \begin{definition}\label{partition_refinement} $P'$ is a refinement of $P$ iff for every $A'\in P'$ there exists $A\in P$ such that $A'\subseteq A$. \end{definition} \begin{abbreviation}\label{partition_refines} $P'\refines P$ iff $P'$ is a refinement of $P$. \end{abbreviation} \begin{proposition}\label{partition_refinement_transitive} Suppose $P''\refines P'\refines P$. Then $P''\refines P$. \end{proposition} \begin{proof} It suffices to show that for all $A''\in P''$ there exists $A\in P$ such that $A''\subseteq A$. Fix $A''\in P''$. Take $A'\in P'$ such that $A''\subseteq A'$ by \cref{partition_refinement}. Take $A\in P$ such that $A'\subseteq A$. Then $A''\subseteq A$. Follows by definition. %i.e. A will do for the current existential goal. \end{proof} %\begin{definition}\label{set_of_representatives} % $X$ is a set of representatives for $P$ iff % for all $A\in P$ there exists $a\in A$ such that % $X\inter A = \{a\}$. %\end{definition}