\import{set.tex} \subsection{Powerset} \begin{abbreviation}\label{powerset_of} The powerset of $X$ denotes $\pow{X}$. \end{abbreviation} \begin{axiom}\label{pow_iff} $B\in\pow{A}$ iff $B\subseteq A$. \end{axiom} \begin{proposition}\label{powerset_intro} Suppose $A\subseteq B$. Then $A\in\pow{B}$. \end{proposition} \begin{proposition}\label{powerset_elim} Let $A\in\pow{B}$. Then $A\subseteq B$. \end{proposition} \begin{proposition}\label{powerset_bottom} $\emptyset\in\pow{A}$. \end{proposition} \begin{proposition}\label{powerset_top} $A\in\pow{A}$. \end{proposition} \begin{proposition}\label{unions_subseteq_of_powerset_is_subseteq} Let $A$ be a set. Let $B$ be a subset of $\pow{A}$. Then $\unions{B}\subseteq A$. \end{proposition} \begin{proof} Follows by \cref{subseteq,powerset_elim,unions_iff}. \end{proof} \begin{corollary}\label{powerset_closed_unions} Let $A$ be a set. Let $B$ be a subset of $\pow{A}$. Then $\unions{B}\in\pow{A}$. \end{corollary} \begin{proof} Follows by \cref{pow_iff,unions_subseteq_of_powerset_is_subseteq}. \end{proof} \begin{proposition}\label{inter_powerset} Let $A,B\in\pow{C}$. Then $A\inter B\in\pow{C}$. \end{proposition} \begin{proof} We have $A,B\subseteq C$ by \cref{pow_iff}. $A\inter B\subseteq C$ by \cref{inter_subseteq}. Follows by \cref{pow_iff}. \end{proof} \begin{proposition}\label{unions_powerset} $\unions{\pow{A}} = A$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{inters_powerset} $\inters{\pow{A}} = \emptyset$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{union_powersets_subseteq} $\pow{A}\union\pow{B} \subseteq \pow{A\union B}$. \end{proposition} \begin{proof} $\pow{A}\subseteq \pow{A}\union\pow{B}$ by \cref{union_upper_left}. $\pow{B}\subseteq \pow{A}\union\pow{B}$ by \cref{union_upper_right}. Follows by \cref{subseteq,pow_iff,powerset_elim,union_iff,subset_transitive}. \end{proof} \begin{proposition}\label{powerset_emptyset} $\pow{\emptyset} = \{\emptyset\}$. \end{proposition} % LATER %\begin{proposition}\label{powerset_cons} % $\pow{\cons{b}{A}} = \pow{A}\union \{\cons{b}{B}\mid B\in\pow{A}\}$. %\end{proposition} \begin{proposition}\label{powerset_union_subseteq} $\pow{A}\union\pow{B}\subseteq \pow{A\union B}$. \end{proposition} \begin{proposition}\label{subseteq_pow_unions} $A\subseteq\pow{\unions{A}}$. \end{proposition} \begin{proof} Follows by \cref{subseteq,pow_iff,unions_intro}. \end{proof} \begin{proposition}\label{unions_pow} $\unions{\pow{A}} = A$. \end{proposition} \begin{proposition}\label{unions_elem_pow_iff} $\unions{A}\in\pow{B}$ iff $A\in\pow{\pow{B}}$. \end{proposition} \begin{proposition}\label{pow_inter} $\pow{A\inter B} = \pow{A}\inter\pow{B}$. \end{proposition} \begin{proof} Follows by \cref{setext,inter,pow_iff,subseteq_inter_iff}. \end{proof}