\import{set.tex} \section{Regularity} \begin{abbreviation}\label{elemminimal} $a$ is an \in-minimal element of $A$ iff $a\in A$ and $a\notmeets A$. \end{abbreviation} % We need to first state regularity in this slightly weirder form, % so that we can do \in-induction. \begin{lemma}% \label{regularity_aux} For all $a, A$ such that $a\in A$ there exists $b\in A$ such that $b\notmeets A$. \end{lemma} \begin{proof}[Proof by \in-induction on $a$] \begin{byCase} \caseOf{$a\notmeets b$.} Straightforward. \caseOf{$a\meets b$.} Take $a'$ such that $a'\in a, b$. Straightforward. % we apply the induction hypothesis to a' \end{byCase} \end{proof} \begin{proposition}[Regularity]% \label{regularity} Let $A$ be an inhabited set. Then there exists a \in-minimal element of $A$. \end{proposition} \begin{proof} Follows by \cref{regularity_aux,inhabited}. \end{proof} % Isabelle/ZF-style foundation for case analysis \begin{theorem}[Foundation]\label{foundation} Let $A$ be a set. Then $A = \emptyset$ or there exists $a\in A$ such that for all $x\in a$ we have $x\notin A$. \end{theorem} \begin{proof} \begin{byCase} \caseOf{$A = \emptyset$.} Straightforward. \caseOf{$A$ is inhabited.} Take $a$ such that $a$ is a \in-minimal element of $A$. Then for all $x\in a$ we have $x\notin A$. \end{byCase} \end{proof}. \begin{proposition}\label{in_irrefl} For all sets $A$ we have $A\not\in A$. \end{proposition} \begin{proof}[Proof by \in-induction] Straightforward. \end{proof} \begin{proposition}\label{in_implies_neq} If $a\in A$, then $a\neq A$. \end{proposition} \begin{proposition}\label{in_asymmetric} For all sets $a, b$ such that $a\in b$ we have $b\notin a$. \end{proposition} \begin{proof}[Proof by \in-induction on $a$] Straightforward. \end{proof}