\import{set/cons.tex} \import{set/regularity.tex} \subsection{Ordinal successor} \begin{definition}\label{suc} $\suc{x} = \cons{x}{x}$. \end{definition} \begin{proposition}\label{suc_intro_self} $x\in\suc{x}$. \end{proposition} \begin{proposition}\label{suc_intro_in} Suppose $x\in y$. Then $x\in\suc{y}$. \end{proposition} \begin{proposition}\label{suc_elim} Suppose $x\in\suc{y}$. Then $x = y$ or $x\in y$. \end{proposition} \begin{proposition}\label{suc_iff} $x\in\suc{y}$ iff $x = y$ or $x\in y$. \end{proposition} \begin{proposition}\label{suc_neq_emptyset} $\suc{x}\neq \emptyset$. \end{proposition} \begin{proposition}\label{suc_subseteq_implies_in} Suppose $\suc{x}\subseteq y$. Then $x\in y$. \end{proposition} \begin{proposition}\label{suc_neq_self} $\suc{x}\neq x$. \end{proposition} \begin{proposition}\label{suc_injective} Suppose $\suc{x} = \suc{y}$. Then $x = y$. \end{proposition} \begin{proof} Suppose not. $\suc{x}\subseteq \suc{y}$. Hence $x\in\suc{y}$. Then $x\in y$. $\suc{y}\subseteq \suc{x}$. Hence $y\in\suc{x}$. Then $y\in x$. Contradiction. \end{proof} \begin{proposition}\label{subseteq_self_suc_intro} $x\subseteq\suc{x}$. \end{proposition} \begin{proposition}\label{suc_subseteq_intro} Suppose $x\in y$ and $x\subseteq y$. Then $\suc{x}\subseteq y$. \end{proposition} \begin{proposition}\label{suc_subseteq_elim} Suppose $\suc{x}\subseteq y$. Then $x\in y$ and $x\subseteq y$. \end{proposition} \begin{proposition}\label{suc_next_subset} There exists no $z$ such that $x\subset z\subset \suc{x}$. \end{proposition} \begin{proof} Follows by \cref{suc,subset,subseteq,subset_witness,suc_elim}. \end{proof}