\subsection{Symmetric difference} \import{set.tex} \begin{definition}\label{symdiff} $x\symdiff y = (x\setminus y)\union (y\setminus x)$. \end{definition} \begin{proposition}% \label{symdiff_as_setdiff} $x\symdiff y = (x\union y)\setminus (y\inter x)$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}% \label{symdiff_implies_xor_in} If $z\in x\symdiff y$, then either $z\in x$ or $z\in y$. \end{proposition} \begin{proposition}% \label{xor_in_implies_symdiff} If either $z\in x$ or $z\in y$, then $z\in x\symdiff y$. \end{proposition} \begin{proof} If $z\in x$ and $z\not\in y$, then $z\in x\setminus y$. If $z\not\in x$ and $z\in y$, then $z\in y\setminus x$. \end{proof} \begin{proposition}% \label{symdiff_assoc} $x\symdiff (y\symdiff z) = (x\symdiff y)\symdiff z$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}% \label{symdiff_comm} $x\symdiff y = y\symdiff x$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof}