\import{algebra/semigroup.tex} \section{monoid} \begin{struct}\label{monoid} A monoid $A$ is a semigroup equipped with \begin{enumerate} \item $\neutral$ \end{enumerate} such that \begin{enumerate} %muss hier ein enumerate hin \item\label{monoid_type} $\neutral[A]\in \carrier[A]$. \item\label{monoid_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$. \item\label{monoid_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$. \end{enumerate} \end{struct} \section{Group} \begin{struct}\label{group} A group $A$ is a monoid such that \begin{enumerate} \item\label{group_inverse} for all $a \in \carrier[A]$ there exist $b \in \carrier[A]$ such that $\mul[A](a, b) =\neutral[A]$. \end{enumerate} \end{struct} \begin{abbreviation}\label{cfourdot} $a\cdot b = \mul(a,b)$. \end{abbreviation} \begin{lemma}\label{neutral_is_idempotent} Let $G$ be a group. $\neutral[G]$ is a idempotent element of $G$. \end{lemma} \begin{proposition}\label{leftinverse_eq_rightinverse} Let $G$ be a group and assume $a \in G$. Then there exist $b\in G$ such that $a \cdot b = \neutral[G]$ and $b \cdot a = \neutral[G]$. \end{proposition} \begin{proof} There exist $b \in G$ such that $a \cdot b = \neutral[G]$. There exist $c \in G$ such that $b \cdot c = \neutral[G]$. $a \cdot b = \neutral[G]$. $(a \cdot b) \cdot c = (\neutral[G]) \cdot c$. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. $a \cdot \neutral[G] = \neutral[G] \cdot c$. $c = c \cdot \neutral[G]$. $c = \neutral[G] \cdot c$. $a \cdot \neutral[G] = c \cdot \neutral[G]$. $a \cdot \neutral[G] = c$ by \cref{monoid_right}. $a = c$ by \cref{monoid_right}. $b \cdot a = b \cdot c$. $b \cdot a = \neutral[G]$. \end{proof}