\import{topology/topological-space.tex} \subsection{Topological basis} \begin{abbreviation}\label{covers} $C$ covers $X$ iff for all $x\in X$ there exists $U\in C$ such that $x\in U$. \end{abbreviation} \begin{proposition}\label{covers_unions_intro} Suppose $C$ covers $X$. Then $X\subseteq\unions{C}$. \end{proposition} \begin{proposition}\label{covers_unions_elim} Suppose $X\subseteq\unions{C}$. Then $C$ covers $X$. \end{proposition} % Also called "prebase", "subbasis", or "subbase". We prefer "pre-" or "quasi-" % for consistency when handling generalizations, even if "subbasis" is more common. \begin{abbreviation}\label{topological_prebasis} $B$ is a topological prebasis for $X$ iff $\unions{B} = X$. \end{abbreviation} \begin{proposition}\label{topological_prebasis_iff_covering_family} $B$ is a topological prebasis for $X$ iff $B$ is a family of subsets of $X$ and $B$ covers $X$. \end{proposition} \begin{proof} If $B$ is a family of subsets of $X$ and $B$ covers $X$, then $\unions{B} = X$ by \cref{subseteq_antisymmetric,unions_family,covers_unions_intro}. If $\unions{B} = X$, then $B$ is a family of subsets of $X$ and $B$ covers $X$ by \cref{covers_unions_intro,subseteq_refl,covers_unions_elim}. \end{proof} % Also called "base of topology". \begin{definition}\label{topological_basis} $B$ is a topological basis for $X$ iff $B$ is a topological prebasis for $X$ and for all $U, V, x$ such that $U, V\in B$ and $x\in U,V$ there exists $W\in B$ such that $x\in W\subseteq U, V$. \end{definition} \begin{definition}\label{genopens} $\genOpens{B}{X} = \left\{ U\in\pow{X} \middle| \textbox{for all $x\in U$ there exists $V\in B$ \\ such that $x\in V\subseteq U$}\right\}$. \end{definition}