\import{topology/topological-space.tex} \import{set.tex} \import{set/powerset.tex} \subsection{Topological basis} \begin{abbreviation}\label{covers} $C$ covers $X$ iff for all $x\in X$ there exists $U\in C$ such that $x\in U$. \end{abbreviation} \begin{proposition}\label{covers_unions_intro} Suppose $C$ covers $X$. Then $X\subseteq\unions{C}$. \end{proposition} \begin{proposition}\label{covers_unions_elim} Suppose $X\subseteq\unions{C}$. Then $C$ covers $X$. \end{proposition} % Also called "prebase", "subbasis", or "subbase". We prefer "pre-" or "quasi-" % for consistency when handling generalizations, even if "subbasis" is more common. \begin{abbreviation}\label{topological_prebasis} $B$ is a topological prebasis for $X$ iff $\unions{B} = X$. \end{abbreviation} \begin{proposition}\label{topological_prebasis_iff_covering_family} $B$ is a topological prebasis for $X$ iff $B$ is a family of subsets of $X$ and $B$ covers $X$. \end{proposition} \begin{proof} If $B$ is a family of subsets of $X$ and $B$ covers $X$, then $\unions{B} = X$ by \cref{subseteq_antisymmetric,unions_family,covers_unions_intro}. If $\unions{B} = X$, then $B$ is a family of subsets of $X$ and $B$ covers $X$ by \cref{covers_unions_intro,subseteq_refl,covers_unions_elim}. \end{proof} % Also called "base of topology". \begin{definition}\label{topological_basis} $B$ is a topological basis for $X$ iff $B$ is a topological prebasis for $X$ and for all $U, V, x$ such that $U, V\in B$ and $x\in U,V$ there exists $W\in B$ such that $x\in W\subseteq U, V$. \end{definition} \begin{definition}\label{genopens} $\genOpens{B}{X} = \left\{ U\in\pow{X} \middle| \textbox{for all $x\in U$ there exists $V\in B$ \\ such that $x\in V\subseteq U$}\right\}$. \end{definition} \begin{lemma}\label{emptyset_in_genopens} Assume $B$ is a topological basis for $X$. $\emptyset \in \genOpens{B}{X}$. \end{lemma} \begin{lemma}\label{all_is_in_genopens} Assume $B$ is a topological basis for $X$. $X \in \genOpens{B}{X}$. \end{lemma} \begin{proof} $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}. $\unions{B} \in \genOpens{B}{X}$. $X \subseteq \unions{B}$. \end{proof} \begin{lemma}\label{union_in_genopens} Assume $B$ is a topological basis for $X$. For all $F\subseteq \genOpens{B}{X}$ we have $\unions{F}\in\genOpens{B}{X}$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{inters_in_genopens} Assume $B$ is a topological basis for $X$. %For all $A, C$ If $A\in \genOpens{B}{X}$ and $C\in \genOpens{B}{X}$ then $(A\inter C) \in \genOpens{B}{X}$. \end{lemma} \begin{proof} Show $(A \inter C) \in \pow{X}$. \begin{subproof} $(A \inter C) \subseteq X$ by assumption. \end{subproof} Therefore for all $A, C \in \genOpens{B}{X}$ we have $(A \inter C) \in \pow{X}$. Show for all $x\in (A\inter C)$ there exists $W \in B$ such that $x\in W$ and $W \subseteq (A\inter C)$. \begin{subproof} Fix $x \in (A\inter C)$. There exist $V' \in B$ such that $x \in V'$ and $V' \subseteq A$ by assumption. %TODO: Warum muss hier by assumtion hin? There exist $V'' \in B$ such that $x \in V''$ and $V'' \subseteq C$ by assumption. There exist $W \in B$ such that $x \in W$ and $W \subseteq v'$ and $W \subseteq V''$ by assumption. Show $W \subseteq (A\inter C)$. \begin{subproof} %$W \subseteq v'$ and $W \subseteq V''$. For all $y \in W$ we have $y \in V'$ and $y \in V''$ by assumption. \end{subproof} \end{subproof} %Therefore for all $A, C, x$ such that $A \in \genOpens{B}{X}$ and $C \in \genOpens{B}{X}$ and $x \in (A \inter C)$ we have there exists $W \in B$ %such that $x\in W$ and $W \subseteq (A\inter C)$. $(A\inter C) \in \genOpens{B}{X}$ by assumption. \end{proof}