\import{topology/topological-space.tex} \import{relation.tex} \import{function.tex} \import{set.tex} \begin{definition}\label{continuous} $f$ is continuous iff for all $U \in \opens[Y]$ we have $\preimg{f}{U} \in \opens[X]$. \end{definition} \begin{proposition}\label{continuous_definition_by_closeds} Let $X$ be a topological space. Let $Y$ be a topological space. Let $f \in \funs{X}{Y}$. Then $f$ is continuous iff for all $U \in \closeds{Y}$ we have $\preimg{f}{U} \in \closeds{X}$. \end{proposition} \begin{proof} Omitted. %We show that if $f$ is continuous then for all $U \in \closeds{Y}$ such that $U \neq \emptyset$ we have $\preimg{f}{U} \in \closeds{X}$. %\begin{subproof} % Suppose $f$ is continuous. % Fix $U \in \closeds{Y}$. % $\carrier[Y] \setminus U$ is open in $Y$. % Then $\preimg{f}{(\carrier[Y] \setminus U)}$ is open in $X$. % Therefore $\carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$ is closed in $X$. % We show that $\carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)} \subseteq \preimg{f}{U}$. % \begin{subproof} % It suffices to show that for all $x \in \carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$ we have $x \in \preimg{f}{U}$. % Fix $x \in \carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$. % Take $y \in \carrier[Y]$ such that $f(x)=y$. % It suffices to show that $y \in U$. % \end{subproof} % $\preimg{f}{U} \subseteq \carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$. %\end{subproof} %We show that if for all $U \in \closeds{Y}$ we have $\preimg{f}{U} \in \closeds{X}$ then $f$ is continuous. %\begin{subproof} % Omitted. %\end{subproof} \end{proof}