\import{set.tex} \import{set/bipartition.tex} \import{topology/topological-space.tex} \subsection{Disconnections} \begin{definition}\label{disconnections} $\disconnections{X} = \{ p\in\bipartitions{\carrier[X]} \mid \text{$\fst{p},\snd{p}\in\opens[X]$} \}$. \end{definition} \begin{abbreviation}\label{is_a_disconnection} $D$ is a disconnection of $X$ iff $D\in\disconnections{X}$. \end{abbreviation} \begin{definition}\label{disconnected} $X$ is disconnected iff there exist $U, V\in\opens[X]$ such that $\carrier[X]$ is partitioned by $U$ and $V$. \end{definition} \begin{proposition}\label{disconnection_from_disconnected} Let $X$ be a topological space. Suppose $X$ is disconnected. Then there exists a disconnection of $X$. \end{proposition} \begin{proof} Take $U, V\in\opens[X]$ such that $\carrier[X]$ is partitioned by $U$ and $V$ by \cref{disconnected}. Then $(U, V)$ is a bipartition of $\carrier[X]$. Thus $(U, V)$ is a disconnection of $X$ by \cref{disconnections,times_proj_elim,times_tuple_intro}. \end{proof} \begin{proposition}\label{disconnected_from_disconnection} Let $X$ be a topological space. Let $D$ be a disconnection of $X$. Then $X$ is disconnected. \end{proposition} \begin{proof} $\fst{D}, \snd{D}\in\opens[X]$. $\carrier[X]$ is partitioned by $\fst{D}$ and $\snd{D}$. \end{proof} \begin{abbreviation}\label{connected} $X$ is connected iff $X$ is not disconnected. \end{abbreviation}