\import{topology/topological-space.tex} \import{numbers.tex} \import{function.tex} \import{set/powerset.tex} \section{Metric Spaces} \begin{definition}\label{metric} $f$ is a metric on $M$ iff $f$ is a function from $M \times M$ to $\reals$ and for all $x,y,z \in M$ we have $f(x,x) = \zero$ and $f(x,y) = f(y,x)$ and $f(x,y) \leq f(x,z) + f(z,y)$ and if $x \neq y$ then $\zero < f(x,y)$. \end{definition} \begin{definition}\label{open_ball} $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric on $M$ and $f(x,z) < r$ } \}$. \end{definition} \begin{definition}\label{induced_topology} $O$ is the induced topology of $d$ in $M$ iff $O \subseteq \pow{M}$ and $d$ is a metric on $M$ and for all $x,r,A,B,C$ such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. \end{definition} %\begin{definition} % $\projcetfirst{A} = \{a \mid \exists x \in X \text{there exist $x \i } \}$ %\end{definition} \begin{definition}\label{set_of_balls} $\balls{d}{M} = \{ O \in \pow{M} \mid \text{there exists $x,r$ such that $r \in \reals$ and $x \in M$ we have $O = \openball{r}{x}{d}$ } \}$. \end{definition} \begin{definition}\label{toindsas} $\metricopens{d}{M} = \{O \in \pow{M} \mid \text{ $d$ is a metric on $M$ and for all $x,r,A,B,C$ such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. } \}$. \end{definition} \begin{theorem}\label{metric_induce_a_topology} \end{theorem} %TODO: \metric_opens{d} = {hier die construction für topology} DONE. %TODO: Die induzierte topology definieren und dann in struct verwenden. \begin{struct}\label{metric_space} A metric space $M$ is a onesorted structure equipped with \begin{enumerate} \item $\metric$ \end{enumerate} such that \begin{enumerate} \item \label{metric_space_metric} $\metric[M]$ is a metric on $M$. \item \label{metric_space_topology} $M$ is a topological space. \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\openball{r}{x}{\metric[M]} \in \opens[M]$. \end{enumerate} \end{struct} \begin{abbreviation}\label{descriptive_syntax_for_openball1} $U$ is an open ball in $M$ of $x$ with radius $r$ iff $x \in M$ and $M$ is a metric space and $U = \openball{r}{x}{\metric[M]}$. \end{abbreviation} \begin{abbreviation}\label{descriptive_syntax_for_openball2} $U$ is an open ball in $M$ iff there exist $x \in M$ such that there exist $r \in \reals$ such that $U$ is an open ball in $M$ of $x$ with radius $r$. \end{abbreviation} \begin{lemma}\label{union_of_open_balls_is_open} Let $M$ be a metric space. For all $U,V \subseteq M$ if $U$, $V$ are open balls in $M$ then $U \union V$ is open in $M$. \end{lemma} %\begin{definition}\label{lenght_of_interval} %TODO: take minus if its implemented % $\lenghtinterval{x}{y} = r$ %\end{definition} \begin{lemma}\label{metric_implies_topology} Let $M$ be a set, and let $f$ be a metric on $M$. Then $M$ is a metric space. \end{lemma} %\begin{struct}\label{metric_space} % A metric space $M$ is a onesorted structure equipped with % \begin{enumerate} % \item $\metric$ % \end{enumerate} % such that % \begin{enumerate} % \item \label{metric_space_d} $\metric[M]$ is a function from $M \times M$ to $\reals$. % \item \label{metric_space_distence_of_a_point} $\metric[M](x,x) = \zero$. % \item \label{metric_space_positiv} for all $x,y \in M$ if $x \neq y$ then $\zero < \metric[M](x,y)$. % \item \label{metric_space_symetrie} $\metric[M](x,y) = \metric[M](y,x)$. % \item \label{metric_space_triangle_equation} for all $x,y,z \in M$ $\metric[M](x,y) < \metric[M](x,z) + \metric[M](z,y)$ or $\metric[M](x,y) = \metric[M](x,z) + \metric[M](z,y)$. % \item \label{metric_space_topology} $M$ is a topological space. % \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\{z \in M \mid \metric[M](x,z) < r\} \in \opens$. % \end{enumerate} %\end{struct} %\begin{definition}\label{open_ball} % $\openball{r}{x}{M} = \{z \in M \mid \metric(x,z) < r\}$. %\end{definition} %\begin{proposition}\label{open_ball_is_open} % Let $M$ be a metric space,let $r \in \reals $, let $x$ be an element of $M$. % Then $\openball{r}{x}{M} \in \opens[M]$. %\end{proposition}