\import{topology/topological-space.tex} \import{numbers.tex} \import{function.tex} \section{Metric Spaces} \begin{abbreviation}\label{metric} $f$ is a metric iff $f$ is a function to $\reals$. \end{abbreviation} \begin{axiom}\label{metric_axioms} $f$ is a metric iff $\dom{f} = A \times A$ and for all $x,y,z \in A$ we have $f(x,x) = \zero$ and $f(x,y) = f(y,x)$ and $f(x,y) \leq f(x,z) + f(z,y)$ and if $x \neq y$ then $\zero < f(x,y)$. \end{axiom} \begin{definition}\label{open_ball} $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric and $\dom{f} = M \times M$ and $f(x,z)