\import{topology/topological-space.tex} \import{numbers.tex} \import{function.tex} \import{set/powerset.tex} \import{topology/basis.tex} \section{Metric Spaces}\label{form_sec_metric} \begin{definition}\label{metric} $f$ is a metric on $M$ iff $f$ is a function from $M \times M$ to $\reals$ and for all $x,y,z \in M$ we have $f(x,x) = \zero$ and $f(x,y) = f(y,x)$ and $f(x,y) \leq f(x,z) + f(z,y)$ and if $x \neq y$ then $\zero < f(x,y)$. \end{definition} \begin{definition}\label{open_ball} $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric on $M$ and $f(x,z) < r$ } \}$. \end{definition} \begin{definition}\label{set_of_balls} $\balls{d}{M} = \{ O \in \pow{M} \mid \text{there exists $x,r$ such that $r \in \reals$ and $x \in M$ and $O = \openball{r}{x}{d}$ } \}$. \end{definition} \begin{definition}\label{metricopens} $\metricopens{d}{M} = \genOpens{\balls{d}{M}}{M}$. \end{definition} %TODO: \metric_opens{d} = {hier die construction für topology} DONE. %TODO: Die induzierte topology definieren und dann in struct verwenden. \begin{struct}\label{metric_space} A metric space $M$ is a onesorted structure equipped with \begin{enumerate} \item $\metric$ \end{enumerate} such that \begin{enumerate} \item \label{metric_space_metric} $\metric[M]$ is a metric on $M$. \item \label{metric_space_topology} $M$ is a topological space. \item \label{metric_space_opens} $\metricopens{ \metric[M] }{M} = \opens[M]$. \end{enumerate} \end{struct} \begin{abbreviation}\label{descriptive_syntax_for_openball1} $U$ is an open ball in $M$ of $x$ with radius $r$ iff $x \in M$ and $M$ is a metric space and $U = \openball{r}{x}{\metric[M]}$. \end{abbreviation} \begin{abbreviation}\label{descriptive_syntax_for_openball2} $U$ is an open ball in $M$ iff there exist $x \in M$ such that there exist $r \in \reals$ such that $U$ is an open ball in $M$ of $x$ with radius $r$. \end{abbreviation} \begin{lemma}\label{union_of_open_balls_is_open} Let $M$ be a metric space. For all $U,V \subseteq M$ if $U$, $V$ are open balls in $M$ then $U \union V$ is open in $M$. \end{lemma} \begin{lemma}\label{metric_implies_topology} Let $M$ be a set, and let $f$ be a metric on $M$. Then $M$ is a metric space. \end{lemma}