\import{set.tex} \import{set/cons.tex} \import{set/powerset.tex} \import{set/fixpoint.tex} \import{set/product.tex} \import{topology/topological-space.tex} \import{topology/separation.tex} \import{topology/continuous.tex} \import{topology/basis.tex} \import{numbers.tex} \import{function.tex} \section{Topology Reals} \begin{definition}\label{topological_basis_reals_eps_ball} $\topoBasisReals = \{ \epsBall{x}{\epsilon} \mid x \in \reals, \epsilon \in \realsplus\}$. \end{definition} \begin{axiom}\label{reals_carrier_reals} $\carrier[\reals] = \reals$. \end{axiom} \begin{lemma}\label{intervals_are_connected_in_reals} Suppose $a,b \in \reals$. Then for all $c \in \reals$ such that $a < c < b$ we have $c \in \intervalopen{a}{b}$. \end{lemma} \begin{lemma}\label{epsball_are_subset_reals_elem} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \reals$. \end{lemma} \begin{lemma}\label{intervalopen_iff} Suppose $a,b,c \in \reals$. Suppose $a < b$. $c \in \intervalopen{a}{b}$ iff $a < c < b$. \end{lemma} \begin{lemma}\label{epsball_are_subseteq_reals_set} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then $\epsBall{x}{\epsilon} \subseteq \reals$. \end{lemma} \begin{lemma}\label{epsball_are_subset_reals_set} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then $\epsBall{x}{\epsilon} \subset \reals$. \end{lemma} \begin{lemma}\label{reals_order_minus_positiv} Suppose $x,y \in \reals$. Suppose $\zero < y$. $x - y < x$. \end{lemma} \begin{lemma}\label{realsplus_bigger_zero} For all $x \in \realsplus$ we have $\zero < x$. \end{lemma} \begin{lemma}\label{realsplus_in_reals} For all $x \in \realsplus$ we have $x \in \reals$. \end{lemma} \begin{lemma}\label{epsball_are_inhabited} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then $\epsBall{x}{\epsilon}$ is inhabited. \end{lemma} \begin{proof} $x < x + \epsilon$ by \cref{reals_order_behavior_with_addition,realsplus,reals_axiom_zero_in_reals,reals_axiom_kommu,reals_axiom_zero}. $x - \epsilon < x$. $x \in \epsBall{x}{\epsilon}$. \end{proof} \begin{lemma}\label{reals_elem_inbetween} For all $a,b \in \reals$ such that $a < b$ we have there exists $c \in \reals$ such that $a < c < b$. \end{lemma} \begin{lemma}\label{epsball_equal_openinterval} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then $\epsBall{x}{\epsilon} = \intervalopen{x - \epsilon}{x + \epsilon}$. \end{lemma} \begin{lemma}\label{minus_behavior1} For all $x \in \reals$ we have $x - x = \zero$. \end{lemma} \begin{lemma}\label{minus_behavior2} For all $x \in \reals$ we have $x + \neg{x} = \zero$. \end{lemma} \begin{lemma}\label{minus_behavior3} For all $x \in \reals$ we have $\neg{x} = \zero - x$. \end{lemma} \begin{lemma}\label{reals_order_is_addition_with_positiv_number} For all $x,y \in \reals$ such that $x < y$ we have there exists $z \in \realsplus$ such that $x + z = y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{reals_order_plus_minus} Suppose $a,b \in \reals$. Suppose $\zero < b$. Then $(a-b) < (a+b)$. \end{lemma} \begin{proof} We show that $a < (a+b)$. \begin{subproof} Trivial. \end{subproof} We show that $(a-b) < a$. \begin{subproof} Trivial. \end{subproof} \end{proof} \begin{lemma}\label{epsball_are_connected_in_reals} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then for all $c \in \reals$ such that $(x - \epsilon) < c < (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$. \end{lemma} \begin{proof} $x - \epsilon \in \reals$. $x + \epsilon \in \reals$. It suffices to show that for all $c$ such that $c \in \reals \land (x - \epsilon) \rless c \rless (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$. Fix $c$ such that $(c \in \reals) \land (x - \epsilon) \rless c \rless (x + \epsilon)$. $(x - \epsilon) < c < (x + \epsilon)$. \end{proof} \begin{theorem}\label{topological_basis_reals_is_prebasis} $\topoBasisReals$ is a topological prebasis for $\reals$. \end{theorem} \begin{proof} We show that $\unions{\topoBasisReals} \subseteq \reals$. \begin{subproof} It suffices to show that for all $x \in \unions{\topoBasisReals}$ we have $x \in \reals$. Fix $x \in \unions{\topoBasisReals}$. \begin{byCase} \caseOf{$x = \emptyset$.} Trivial. \caseOf{$x \neq \emptyset$.} %There exists $U \in \topoBasisReals$ such that $x \in U$. Take $U \in \topoBasisReals$ such that $x \in U$. Follows by \cref{epsball_are_subseteq_reals_set,topological_basis_reals_eps_ball,epsilon_ball,minus,subseteq}. \end{byCase} \end{subproof} We show that $\reals \subseteq \unions{\topoBasisReals}$. \begin{subproof} It suffices to show that for all $x \in \reals$ we have $x \in \unions{\topoBasisReals}$. Fix $x \in \reals$. $\epsBall{x}{1} \in \topoBasisReals$. Therefore $x \in \unions{\topoBasisReals}$ by \cref{one_in_reals,reals_one_bigger_zero,unions_intro,realsplus,plus_one_order,reals_order_minus_positiv,epsball_are_connected_in_reals}. \end{subproof} \end{proof} %\begin{lemma}\label{intervl_intersection_is_interval} % Suppose $a,b,a',b' \in \reals$. % Suppose there exist $x \in \reals$ such that $x \in \intervalopen{a}{b} \inter \intervalopen{a'}{b'}$. % Then there exists $q,p \in \reals$ such that $q < p$ and $\intervalopen{q}{p} \subseteq \intervalopen{a}{b} \inter \intervalopen{a'}{b'}$. %\end{lemma} % \begin{lemma}\label{reals_order_total} For all $x,y \in \reals$ we have either $x < y$ or $x \geq y$. \end{lemma} \begin{proof} It suffices to show that for all $x \in \reals$ we have for all $y \in \reals$ we have either $x < y$ or $x \geq y$. Fix $x \in \reals$. Fix $y \in \reals$. Omitted. \end{proof} \begin{lemma}\label{topo_basis_reals_eps_iff} $X \in \topoBasisReals$ iff there exists $x_0, \delta$ such that $x_0 \in \reals$ and $\delta \in \realsplus$ and $\epsBall{x_0}{\delta} = X$. \end{lemma} \begin{lemma}\label{topo_basis_reals_intro} For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have $\epsBall{x}{\delta} \in \topoBasisReals$. \end{lemma} \begin{lemma}\label{realsplus_in_reals_plus} For all $x,y$ such that $x \in \reals$ and $y \in \realsplus$ we have $x + y \in \reals$. \end{lemma} \begin{lemma}\label{realspuls_in_reals_minus} For all $x,y$ such that $x \in \reals$ and $y \in \realsplus$ we have $x - y \in \reals$. \end{lemma} \begin{lemma}\label{eps_ball_implies_open_interval} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then there exists $a,b \in \reals$ such that $a < b$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$. \end{lemma} \begin{lemma}\label{one_in_realsplus} $1 \in \realsplus$. \end{lemma} \begin{lemma}\label{reals_existence_addition_reverse} For all $\delta \in \reals$ there exists $\epsilon \in \reals$ such that $\epsilon + \epsilon = \delta$. \end{lemma} \begin{proof} Fix $\delta \in \reals$. Follows by \cref{one_in_realsplus,reals_disstro2,reals_axiom_disstro1,reals_rmul,suc_eq_plus_one,reals_axiom_mul_invers,suc,suc_neq_emptyset,realsplus_in_reals_plus,naturals_addition_axiom_2,naturals_1_kommu,reals_axiom_zero,naturals_inductive_set,one_is_suc_zero,realsplus,reals_one_bigger_zero,one_in_reals,reals_axiom_one,minus_in_reals}. \end{proof} \begin{lemma}\label{reals_addition_minus_behavior1} For all $a,b,c \in \reals$ such that $a = b + c$ we have $b = a - c$. \end{lemma} \begin{proof} It suffices to show that for all $a \in \reals$ for all $b \in \reals$ for all $c \in \reals$ if $a = b + c$ then $b = a - c$. Fix $a \in \reals$. Fix $b \in \reals$. Fix $c \in \reals$. Suppose $a = b + c$. Then $a + \neg{c} = b + c + \neg{c}$. Therefore $a - c = b + c + \neg{c}$. $a - c = (b + c) - c$. $(b + c) - c = (b + c) + \neg{c}$. $(b + c) + \neg{c} = b + (c + \neg{c})$. $b + (c + \neg{c}) = b + (\zero)$. $a - c = b$. \end{proof} \begin{lemma}\label{reals_addition_minus_behavior2} For all $a,b,c \in \reals$ such that $a = b - c$ we have $b = c + a$. \end{lemma} \begin{lemma}\label{open_interval_eq_eps_ball} Suppose $a,b \in \reals$. Suppose $a < b$. Then there exist $x,\epsilon$ such that $x \in \reals$ and $\epsilon \in \realsplus$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$. \end{lemma} \begin{proof} Let $\delta = (b-a)$. $\delta$ is positiv by \cref{minus_in_reals,minus_behavior3,reals_axiom_zero_in_reals,reals_order_behavior_with_addition,minus_behavior1,minus}. There exists $\epsilon \in \reals$ such that $\epsilon + \epsilon = \delta$. Let $x = a + \epsilon$. $a + \delta = b$. $a + \epsilon + \epsilon = b$. $x + \epsilon = b$. $\epsilon \in \realsplus$ by \cref{reals_order_behavior_with_addition,reals_axiom_kommu,reals_axiom_zero,reals_order_is_transitive,reals_add,minus_behavior1,minus_behavior3,minus,reals_order_total,reals_axiom_zero_in_reals,realsplus}. $a = x - \epsilon$. $b = x + \epsilon$. We show that $\intervalopen{a}{b} \subseteq \epsBall{x}{\epsilon}$. \begin{subproof} It suffices to show that for all $y \in \intervalopen{a}{b}$ we have $y \in \epsBall{x}{\epsilon}$. Fix $y \in \intervalopen{a}{b}$. \end{subproof} We show that $\epsBall{x}{\epsilon} \subseteq \intervalopen{a}{b}$. \begin{subproof} It suffices to show that for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \intervalopen{a}{b}$ by \cref{subseteq}. Fix $y \in \epsBall{x}{\epsilon}$. \end{subproof} \end{proof} \begin{lemma}\label{intersection_openinterval_inclusion_of_border} Suppose $a,b,x,y \in \reals$. Suppose $a < b$. Suppose $x < y$. Suppose $a \leq x < y \leq b$. Then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{intersection_openinterval_lower_border_eq} Suppose $a,b,x,y \in \reals$. Suppose $a < b$. Suppose $x < y$. Suppose $a = x$ and $b \leq y$. Then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{a}{b}$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{intersection_openinterval_upper_border_eq} Suppose $a,b,x,y \in \reals$. Suppose $a < b$. Suppose $x < y$. Suppose $a \leq x$ and $b = y$. Then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{intersection_openinterval_none_border_eq} Suppose $a,b,x,y \in \reals$. Suppose $a < b$. Suppose $x < y$. If $a \leq x < b \leq y$ then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{b}$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{reals_order_total2} For all $a,b \in \reals$ we have $a < b \lor a > b \lor a = b$. \end{lemma} \begin{theorem}\label{topological_basis_reals_is_basis} $\topoBasisReals$ is a topological basis for $\reals$. \end{theorem} \begin{proof} $\topoBasisReals$ is a topological prebasis for $\reals$ by \cref{topological_basis_reals_is_prebasis}. Let $B = \topoBasisReals$. It suffices to show that for all $U \in B$ we have for all $V \in B$ we have for all $x$ such that $x \in U, V$ there exists $W\in B$ such that $x\in W\subseteq U, V$. Fix $U \in B$. Fix $V \in B$. It suffices to show that for all $x \in U \inter V$ there exists $W\in B$ such that $x\in W\subseteq U, V$. Fix $x \in U \inter V$. \begin{byCase} \caseOf{$U \inter V = \emptyset$.} Trivial. \caseOf{$U \inter V \neq \emptyset$.} Then $U \inter V$ is inhabited. $x \in \reals$ by \cref{inter_lower_left,subseteq,topological_prebasis_iff_covering_family,omega_is_an_ordinal,naturals_subseteq_reals,subset_transitive,suc_subseteq_elim,ordinal_suc_subseteq}. There exists $x_1, \alpha$ such that $x_1 \in \reals$ and $\alpha \in \realsplus$ and $\epsBall{x_1}{\alpha} = U$. There exists $x_2, \beta$ such that $x_2 \in \reals$ and $\beta \in \realsplus$ and $\epsBall{x_2}{\beta} = V$. Then $ (x_1 - \alpha) < x < (x_1 + \alpha)$. Then $ (x_2 - \beta) < x < (x_2 + \beta)$. Let $a = (x_1 - \alpha)$. Let $b = (x_1 + \alpha)$. Let $c = (x_2 - \beta)$. Let $d = (x_2 + \beta)$. We have $a < b$ and $a < x$ and $x < b$. We have $c < d$ and $c < x$ and $x < d$. We have $a \in \reals$. We have $b \in \reals$. We have $c \in \reals$. We have $d \in \reals$. We show that there exist $a',b'\in \reals$ such that $\intervalopen{a}{b} \inter \intervalopen{c}{d} = \intervalopen{a'}{b'}$. \begin{subproof} \begin{byCase} \caseOf{$a < c$.} \begin{byCase} \caseOf{$b < d$.} Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}. \caseOf{$b = d$.} Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}. \caseOf{$b > d$.} Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}. \end{byCase} \caseOf{$a = c$.} \begin{byCase} \caseOf{$b < d$.} Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}. \caseOf{$b = d$.} Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}. \caseOf{$b > d$.} Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}. \end{byCase} \caseOf{$a > c$.} \begin{byCase} \caseOf{$b < d$.} Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus,reals_add,minus_in_reals,realsplus,inter_comm,epsilon_ball}. \caseOf{$b = d$.} Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus,reals_add,minus_in_reals,realsplus,inter_comm,epsilon_ball}. \caseOf{$b > d$.} Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus,reals_add,minus_in_reals,realsplus,inter_comm,epsilon_ball}. \end{byCase} \end{byCase} \end{subproof} Take $a',b'\in \reals$ such that $\intervalopen{a}{b} \inter \intervalopen{c}{d} = \intervalopen{a'}{b'}$. We have $a',b' \in \reals$ by assumption. We have $a' < b'$ by \cref{id_img,epsilon_ball,minus,intervalopen,reals_order_is_transitive}. Then there exist $x',\epsilon'$ such that $x' \in \reals$ and $\epsilon' \in \realsplus$ and $\intervalopen{a'}{b'} = \epsBall{x'}{\epsilon'}$. Then $x \in \epsBall{x'}{\epsilon'}$ by \cref{epsilon_ball}. Follows by \cref{inter_lower_left,inter_lower_right,epsilon_ball,topological_basis_reals_eps_ball}. %Then $(x_1 - \alpha) < (x_2 + \beta)$. %Therefore $U \inter V = \intervalopen{}{(x_2 + \beta)}$. %We show that if there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$ then there exists $W\in B$ such that $x\in W\subseteq U, V$. %\begin{subproof} % Suppose there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$. % $x \in \epsBall{x}{\delta}$. % $\epsBall{x}{\delta} \subseteq U$. % $\epsBall{x}{\delta} \subseteq V$. % $\epsBall{x}{\delta} \in B$. %\end{subproof} %It suffices to show that there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$. %It suffices to show that there exists $x_0, \delta$ such that $x_0 \in \reals$ and $\delta \in \realsplus$ and $\epsBall{x_0}{\delta} \subseteq u \inter V$. %There exists $x_1, \alpha$ such that $x_1 \in \reals$ and $\alpha \in \realsplus$ and $\epsBall{x_1}{\alpha} = U$. %There exists $x_2, \beta$ such that $x_2 \in \reals$ and $\beta \in \realsplus$ and $\epsBall{x_2}{\beta} = V$. %Then $ (x_1 - \alpha) < x < (x_1 + \alpha)$. %Then $ (x_2 - \beta) < x < (x_2 + \beta)$. %\begin{byCase} % \caseOf{$x_1 = x_2$.} % Take $\gamma \in \realsplus$ such that either $\gamma = \alpha \land \gamma \leq \beta$ or $\gamma \leq \alpha \land \gamma = \beta$. % \caseOf{$x_1 < x_2$.} % \caseOf{$x_1 > x_2$.} %\end{byCase} %%Take $m$ such that $m \in \min{\{(x_1 + \alpha), (x_2 + \beta)\}}$. %Take $n$ such that $n \in \max{\{(x_1 - \alpha), (x_2 - \beta)\}}$. %Then $m < x < n$. %We show that there exists $x_1 \in \reals$ such that $x_1 \in U \inter V$ and $x_1 < x$. %\begin{subproof} % Suppose not. % Then For all $y \in U \inter V$ we have $x \leq y$. %\end{subproof} %We show that there exists $x_2 \in \reals$ such that $x_2 \in U \inter V$ and $x_2 > x$. %\begin{subproof} % Trivial. %\end{subproof} \end{byCase} \end{proof} \begin{axiom}\label{topological_space_reals} $\opens[\reals] = \genOpens{\topoBasisReals}{\reals}$. \end{axiom} \begin{theorem}\label{reals_is_topological_space} $\reals$ is a topological space. \end{theorem} \begin{proof} $\topoBasisReals$ is a topological basis for $\reals$. Let $B = \topoBasisReals$. We show that $\opens[\reals]$ is a family of subsets of $\carrier[\reals]$. \begin{subproof} It suffices to show that for all $A \in \opens[\reals]$ we have $A \subseteq \reals$. Fix $A \in \opens[\reals]$. Follows by \cref{powerset_elim,topological_space_reals,genopens}. \end{subproof} We show that $\reals \in\opens[\reals]$. \begin{subproof} $B$ covers $\reals$ by \cref{topological_prebasis_iff_covering_family,topological_basis}. $\unions{B} \in \genOpens{B}{\reals}$. $\reals \subseteq \unions{B}$. \end{subproof} We show that for all $A, B\in \opens[\reals]$ we have $A\inter B\in\opens[\reals]$. \begin{subproof} Follows by \cref{topological_space_reals,inters_in_genopens}. \end{subproof} We show that for all $F\subseteq \opens[\reals]$ we have $\unions{F}\in\opens[\reals]$. \begin{subproof} Follows by \cref{topological_space_reals,union_in_genopens}. \end{subproof} $\carrier[\reals] = \reals$. Follows by \cref{topological_space}. \end{proof} \begin{proposition}\label{open_interval_is_open} Suppose $a,b \in \reals$. Then $\intervalopen{a}{b} \in \opens[\reals]$. \end{proposition} \begin{proof} If $a > b$ then $\intervalopen{a}{b} = \emptyset$. If $a = b$ then $\intervalopen{a}{b} = \emptyset$. It suffices to show that if $a < b$ then $\intervalopen{a}{b} \in \opens[\reals]$. Suppose $a \rless b$. Take $x, \epsilon$ such that $x \in \reals$ and $\epsilon \in \realsplus$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$. It suffices to show that $\epsBall{x}{\epsilon} \in \opens[\reals]$. $\topoBasisReals$ is a topological basis for $\reals$. $\epsBall{x}{\epsilon} \in \topoBasisReals$. $\topoBasisReals \subseteq \opens[\reals]$ by \cref{basis_is_in_genopens,topological_space_reals,topological_basis_reals_is_basis}. \end{proof} \begin{lemma}\label{reals_minus_to_realsplus} Suppose $a,b \in \reals$. Suppose $a < b$. Then $(b - a) \in \realsplus$. \end{lemma} \begin{lemma}\label{existence_of_epsilon_upper_border} Suppose $a,b \in \reals$. Suppose $a < b$. Then there exists $\epsilon \in \realsplus$ such that $b \notin \epsBall{a}{\epsilon}$. \end{lemma} \begin{proof} Let $\epsilon = b - a$. Then $\epsilon \in \realsplus$. It suffices to show that $b \notin \epsBall{a}{\epsilon}$ by \cref{epsilon_ball,reals_addition_minus_behavior2,realsplus,minus,intervalopen,order_reals_lemma0}. Suppose not. Then $ b \in \epsBall{a}{\epsilon}$. Therefore $ (a - \epsilon) < b < (a + \epsilon)$. $b = (a + \epsilon)$. Contradiction. \end{proof} \begin{lemma}\label{existence_of_epsilon_lower_border} Suppose $a,b \in \reals$. Suppose $a > b$. Then there exists $\epsilon \in \realsplus$ such that $b \notin \epsBall{a}{\epsilon}$. \end{lemma} \begin{proof} Let $\epsilon = a - b$. Then $\epsilon \in \realsplus$. It suffices to show that $b \notin \epsBall{a}{\epsilon}$ by \cref{epsilon_ball,reals_addition_minus_behavior2,realsplus,minus,intervalopen,order_reals_lemma0}. Suppose not. Then $ b \in \epsBall{a}{\epsilon}$. Therefore $ (a - \epsilon) < b < (a + \epsilon)$. $b = (a - \epsilon)$. Contradiction. \end{proof} \begin{proposition}\label{openinterval_infinite_left_in_opens} Suppose $a \in \reals$. Then $\intervalopenInfiniteLeft{a} \in \opens[\reals]$. \end{proposition} \begin{proof} Let $E = \{ B \in \pow{\reals} \mid \exists x \in \intervalopenInfiniteLeft{a} . \exists \delta \in \realsplus . B = \epsBall{x}{\delta} \land a \notin \epsBall{x}{\delta} \}$. We show that for all $x \in \intervalopenInfiniteLeft{a}$ we have there exists $e \in E$ such that $x \in e$. \begin{subproof} Fix $x \in \intervalopenInfiniteLeft{a}$. Then $x < a$. Take $\delta' \in \realsplus$ such that $a \notin \epsBall{x}{\delta'}$. $x \in \epsBall{x}{\delta'}$ by \cref{intervalopen,epsilon_ball,reals_addition_minus_behavior1,reals_order_minus_positiv,minus,reals_add,realsplus,intervalopen_infinite_left}. $a \notin \epsBall{x}{\delta'}$. $\epsBall{x}{\delta'} \in E$. \end{subproof} $E \subseteq \topoBasisReals$. We show that $\unions{E} = \intervalopenInfiniteLeft{a}$. \begin{subproof} We show that $\unions{E} \subseteq \intervalopenInfiniteLeft{a}$. \begin{subproof} It suffices to show that for all $x \in \unions{E}$ we have $x \in \intervalopenInfiniteLeft{a}$. Fix $x \in \unions{E}$. Take $e \in E$ such that $x \in e$ by \cref{unions_iff}. $x \in \reals$. Take $x',\delta'$ such that $x' \in \reals$ and $\delta' \in \realsplus$ and $e = \epsBall{x'}{\delta'}$ by \cref{epsilon_ball,minus,topo_basis_reals_eps_iff,setminus,setminus_emptyset,elem_subseteq}. $\epsBall{x'}{\delta'} \in E$. We show that for all $y \in e$ we have $y < a$. \begin{subproof} Fix $y \in e$. Then $y \in \epsBall{x'}{\delta'}$. $e = \epsBall{x'}{\delta'}$. There exists $x'' \in \intervalopenInfiniteLeft{a}$ such that there exists $\delta'' \in \realsplus$ such that $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$. Take $x'',\delta''$ such that $x'' \in \intervalopenInfiniteLeft{a}$ and $\delta'' \in \realsplus$ and $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$. Suppose not. Take $y' \in e$ such that $y' > a$. $x'' < a$. $(x'' - \delta'') < y' < (x'' + \delta'')$ by \cref{minus,intervalopen,epsilon_ball,realsplus,reals_add,reals_addition_minus_behavior1,reals_order_minus_positiv}. $(x'' - \delta'') < x'' < (x'' + \delta'')$ by \cref{minus,intervalopen,epsilon_ball,realsplus,reals_add,reals_addition_minus_behavior1,reals_order_minus_positiv}. Then $x'' < a < y'$. Therefore $(x'' - \delta'') < a < (x'' + \delta'')$ by \cref{realspuls_in_reals_minus,intervalopen_infinite_left,reals_order_is_transitive,reals_add,realsplus_in_reals,powerset_elim,subseteq}. Then $a \in e$ by \cref{epsball_are_connected_in_reals,intervalopen_infinite_left,neq_witness}. Contradiction. \end{subproof} $x < a$. Then $x \in \intervalopenInfiniteLeft{a}$. \end{subproof} We show that $\intervalopenInfiniteLeft{a} \subseteq \unions{E}$. \begin{subproof} Trivial. \end{subproof} \end{subproof} $\unions{E} \in \opens[\reals]$ by \cref{opens_unions,reals_is_topological_space,basis_is_in_genopens,topological_space_reals,topological_basis_reals_is_basis,subset_transitive}. \end{proof} \begin{lemma}\label{continuous_on_basis_implies_continuous_endo} Suppose $X$ is a topological space. Suppose $B$ is a topological basis for $X$. Suppose $f$ is a function from $X$ to $X$. $f$ is continuous iff for all $b \in B$ we have $\preimg{f}{b} \in \opens[X]$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{openinterval_infinite_right_in_opens} Suppose $a \in \reals$. Then $\intervalopenInfiniteRight{a} \in \opens[\reals]$. \end{proposition} \begin{proof} Let $E = \{ B \in \pow{\reals} \mid \exists x \in \intervalopenInfiniteRight{a} . \exists \delta \in \realsplus . B = \epsBall{x}{\delta} \land a \notin \epsBall{x}{\delta} \}$. We show that for all $x \in \intervalopenInfiniteRight{a}$ we have there exists $e \in E$ such that $x \in e$. \begin{subproof} Fix $x \in \intervalopenInfiniteRight{a}$. Then $a < x$. Take $\delta' \in \realsplus$ such that $a \notin \epsBall{x}{\delta'}$. $x \in \epsBall{x}{\delta'}$ by \cref{intervalopen,epsilon_ball,reals_addition_minus_behavior1,reals_order_minus_positiv,minus,reals_add,realsplus,intervalopen_infinite_right}. $a \notin \epsBall{x}{\delta'}$. $\epsBall{x}{\delta'} \in E$. \end{subproof} $E \subseteq \topoBasisReals$. We show that $\unions{E} = \intervalopenInfiniteRight{a}$. \begin{subproof} We show that $\unions{E} \subseteq \intervalopenInfiniteRight{a}$. \begin{subproof} It suffices to show that for all $x \in \unions{E}$ we have $x \in \intervalopenInfiniteRight{a}$. Fix $x \in \unions{E}$. Take $e \in E$ such that $x \in e$ by \cref{unions_iff}. $x \in \reals$. Take $x',\delta'$ such that $x' \in \reals$ and $\delta' \in \realsplus$ and $e = \epsBall{x'}{\delta'}$ by \cref{epsilon_ball,minus,topo_basis_reals_eps_iff,setminus,setminus_emptyset,elem_subseteq}. $\epsBall{x'}{\delta'} \in E$. We show that for all $y \in e$ we have $y > a$. \begin{subproof} Fix $y \in e$. Then $y \in \epsBall{x'}{\delta'}$. $e = \epsBall{x'}{\delta'}$. There exists $x'' \in \intervalopenInfiniteRight{a}$ such that there exists $\delta'' \in \realsplus$ such that $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$. Take $x'',\delta''$ such that $x'' \in \intervalopenInfiniteRight{a}$ and $\delta'' \in \realsplus$ and $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$. Suppose not. Take $y' \in e$ such that $y' < a$ by \cref{reals_order_total,intervalopen,eps_ball_implies_open_interval}. $x'' > a$. $(x'' - \delta'') < y' < (x'' + \delta'')$ by \cref{minus,intervalopen,intervalclosed,epsilon_ball,realsplus,reals_add,reals_addition_minus_behavior1,reals_order_minus_positiv}. $(x'' - \delta'') < x'' < (x'' + \delta'')$ by \cref{minus,intervalopen,intervalclosed,epsilon_ball,realsplus,reals_add,reals_addition_minus_behavior1,reals_order_minus_positiv}. Then $x'' > a > y'$. Therefore $(x'' - \delta'') > a > (x'' + \delta'')$ by \cref{realspuls_in_reals_minus,intervalopen_infinite_right,reals_order_is_transitive,reals_add,realsplus_in_reals,powerset_elim,subseteq,epsball_are_connected_in_reals,subseteq}. Then $a \in e$ by \cref{reals_order_is_transitive,reals_order_total,reals_add,realsplus,epsball_are_connected_in_reals,intervalopen_infinite_right,neq_witness}. Contradiction. \end{subproof} $x > a$. Then $x \in \intervalopenInfiniteRight{a}$. \end{subproof} We show that $\intervalopenInfiniteRight{a} \subseteq \unions{E}$. \begin{subproof} Trivial. \end{subproof} \end{subproof} $\unions{E} \in \opens[\reals]$. %Let $I = \{\neg{b} \mid b \in \intervalopenInfiniteRight{a} \}$. %Let $f(x) = \neg{x}$ for $x \in \reals$. %$f$ is a function from $\reals$ to $\reals$. %We show that $f$ is continuous. %\begin{subproof} % It suffices to show that for all $b \in \topoBasisReals$ we have $\preimg{f}{b} \in \opens[\reals]$. % Fix $b \in \topoBasisReals$. % Take $x, \epsilon$ such that $x \in \reals$ and $\epsilon \in \realsplus$ and $b = \epsBall{x}{\epsilon}$. % Let $y = \neg{x}$. % It suffices to show that $\preimg{f}{b} \in \topoBasisReals$ by \cref{topological_space_reals,topological_basis_reals_is_basis,basis_is_in_genopens,cons_remove,cons_subseteq_iff}. % It suffices to show that $\epsBall{y}{\epsilon} = \preimg{f}{\epsBall{x}{\epsilon}}$. % $\preimg{f}{\epsBall{x}{\epsilon}} \subseteq \reals$. % $\epsBall{y}{\epsilon} \subseteq \reals$ by \cref{intervalopen,subseteq,minus,epsilon_ball}. % %It suffices to show that for all $x \in \reals$ we have $x \in \epsBall{y}{\epsilon}$ iff $x \in \preimg{f}{\epsBall{x}{\epsilon}}$. % %Fix $x \in \reals$. % Let $u = (y - \epsilon)$. % Let $v = (y + \epsilon)$. % $u = \neg{(x - \epsilon)}$. % $v = \neg{(x + \epsilon)}$. % %$v - u = \epsilon + \epsilon$. % We show that for all $z \in \epsBall{y}{\epsilon}$ we have $z \in \preimg{f}{\epsBall{x}{\epsilon}}$. % \begin{subproof} % Fix $z \in \epsBall{y}{\epsilon}$. % Then $u < z < v$. % Let $z' = z - u$. % Then $z = u + z'$. % Suppose not. % Let $h = \neg{z}$. % $\neg{h} = \neg{\neg{z}}$. % $\neg{h} = z$. % Then $f(h) = \neg{h}$. % $f(h) = z$. % Then $z \in \preimg{f}{\{h\}}$. % % \end{subproof} % We show that for all $z \in \preimg{f}{\epsBall{x}{\epsilon}}$ we have $z \in \epsBall{y}{\epsilon}$. % \begin{subproof} % Fix $z \in \preimg{f}{\epsBall{x}{\epsilon}}$. % Take $h \in \epsBall{x}{\epsilon}$ such that $f(h) = z$. % \end{subproof} % Follows by set extensionality. %\end{subproof} %$\intervalopenInfiniteLeft{a} \in \opens[\reals]$. %We show that $\preimg{f}{\intervalopenInfiniteLeft{a}} = \intervalopenInfiniteRight{a}$. %\begin{subproof} % Omitted. %\end{subproof} %Then $\intervalopenInfiniteRight{a} \in \opens[\reals]$ by \cref{continuous,preim_eq_img_of_converse,openinterval_infinite_left_in_opens}. \end{proof} \begin{lemma}\label{reals_as_union_of_open_closed_intervals1} Suppose $a,b \in \reals$. Then $\reals = \intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b} \union \intervalclosed{a}{b}$. \end{lemma} \begin{proof} We show that for all $x \in \reals$ we have $x \in (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b} \union \intervalclosed{a}{b})$. \begin{subproof} Fix $x \in \reals$. Follows by \cref{union_intro_left,intervalopen_infinite_left,reals_order_total,reals_order_total2,union_iff,intervalopen_infinite_right,union_assoc,union_intro_right,intervalclosed}. \end{subproof} \end{proof} \begin{lemma}\label{reals_as_union_of_open_closed_intervals2} Suppose $a \in \reals$. Then $\reals = \intervalopenInfiniteLeft{a} \union \intervalclosedInfiniteRight{a}$. \end{lemma} \begin{proof} It suffices to show that for all $x \in \reals$ we have either $x \in \intervalopenInfiniteLeft{a}$ or $x \in \intervalclosedInfiniteRight{a}$ by \cref{intervalopen_infinite_left,union_intro_left,neq_witness,intervalclosed_infinite_right,union_intro_right,union_iff}. Trivial. \end{proof} \begin{lemma}\label{reals_as_union_of_open_closed_intervals3} Suppose $a \in \reals$. Then $\reals = \intervalopenInfiniteRight{a} \union \intervalclosedInfiniteLeft{a}$. \end{lemma} \begin{proof} It suffices to show that for all $x \in \reals$ we have either $x \in \intervalclosedInfiniteLeft{a}$ or $x \in \intervalopenInfiniteRight{a}$. Trivial. \end{proof} \begin{lemma}\label{intersection_of_open_closed__infinite_intervals_open_right} Suppose $a \in \reals$. Then $\intervalopenInfiniteRight{a} \inter \intervalclosedInfiniteLeft{a} = \emptyset$. \end{lemma} \begin{proof} Follows by \cref{reals_order_total,inter_lower_left,intervalopen_infinite_right,order_reals_lemma6,inter_lower_right,foundation,subseteq,intervalclosed_infinite_left}. \end{proof} \begin{lemma}\label{intersection_of_open_closed__infinite_intervals_open_left} Suppose $a \in \reals$. Then $\intervalopenInfiniteLeft{a} \inter \intervalclosedInfiniteRight{a} = \emptyset$. \end{lemma} \begin{proposition}\label{closedinterval_infinite_right_in_closeds} Suppose $a \in \reals$. Then $\intervalclosedInfiniteRight{a} \in \closeds{\reals}$. \end{proposition} \begin{proof} $\intervalclosedInfiniteRight{a} = \reals \setminus \intervalopenInfiniteLeft{a}$ by \cref{intersection_of_open_closed__infinite_intervals_open_left,reals_as_union_of_open_closed_intervals2,setminus_inter,double_relative_complement,subseteq_union_setminus,subseteq_setminus,setminus_union,setminus_disjoint,setminus_partition,setminus_subseteq,setminus_emptyset,setminus_self,setminus_setminus,double_complement_union}. \end{proof} \begin{proposition}\label{closedinterval_infinite_left_in_closeds} Suppose $a \in \reals$. Then $\intervalclosedInfiniteLeft{a} \in \closeds{\reals}$. \end{proposition} \begin{proof} $\intervalclosedInfiniteLeft{a} = \reals \setminus \intervalopenInfiniteRight{a}$. \end{proof} \begin{proposition}\label{closedinterval_eq_openintervals_setminus_reals} Suppose $a,b \in \reals$. Then $\reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b}) = \intervalclosed{a}{b}$. \end{proposition} \begin{proof} We have $\intervalclosed{a}{b} \subseteq \reals$. We show that $\reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b}) = (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$. \begin{subproof} We show that for all $x \in \reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b})$ we have $x \in (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$. \begin{subproof} Fix $x \in \reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b})$. Then $x \in \reals \setminus \intervalopenInfiniteLeft{a}$ by \cref{setminus,double_complement_union}. Then $x \in \reals \setminus \intervalopenInfiniteRight{b}$ by \cref{union_upper_left,subseteq,union_comm,subseteq_implies_setminus_supseteq}. Follows by \cref{inter_intro}. \end{subproof} We show that for all $x \in (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$ we have $x \in \reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b})$. \begin{subproof} Fix $x \in (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$. Then $x \in (\reals \setminus \intervalopenInfiniteLeft{a})$ by \cref{setminus_setminus,setminus}. Then $x \in (\reals \setminus \intervalopenInfiniteRight{b})$ by \cref{inter_lower_right,elem_subseteq,setminus_setminus}. \end{subproof} Follows by \cref{setminus_union}. \end{subproof} We show that $\reals \setminus \intervalopenInfiniteLeft{a} = \intervalclosedInfiniteRight{a}$. \begin{subproof} For all $x \in \intervalclosedInfiniteRight{a}$ we have $x \geq a$. For all $x \in (\reals \setminus \intervalopenInfiniteLeft{a})$ we have $x \geq a$. Follows by set extensionality. \end{subproof} $\reals \setminus \intervalopenInfiniteRight{b} = \intervalclosedInfiniteLeft{b}$. It suffices to show that $\intervalclosedInfiniteLeft{b} \inter \intervalclosedInfiniteRight{a} = \intervalclosed{a}{b}$. For all $x \in \intervalclosed{a}{b}$ we have $a \leq x \leq b$. For all $x \in (\intervalclosedInfiniteLeft{b} \inter \intervalclosedInfiniteRight{a})$ we have $a \leq x \leq b$. Follows by set extensionality. \end{proof} \begin{proposition}\label{closedinterval_is_closed} Suppose $a,b \in \reals$. Then $\intervalclosed{a}{b} \in \closeds{\reals}$. \end{proposition} \begin{proof} We have $\reals = \intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b} \union \intervalclosed{a}{b}$. It suffices to show that $\reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b}) = \intervalclosed{a}{b}$ by \cref{closeds,setminus_subseteq,powerset_intro,closed_minus_open_is_closed,opens_type,subseteq_refl,union_open,is_closed_in,reals_carrier_reals,setminus_self,emptyset_open,reals_is_topological_space,openinterval_infinite_left_in_opens,openinterval_infinite_right_in_opens}. \end{proof}