\import{set.tex} \import{set/cons.tex} \import{set/powerset.tex} \import{set/fixpoint.tex} \import{set/product.tex} \import{topology/topological-space.tex} \import{topology/separation.tex} \import{topology/continuous.tex} \import{topology/basis.tex} \import{numbers.tex} \import{function.tex} \section{The canonical topology on $\mathbbR$} \begin{definition}\label{topological_basis_reals_eps_ball} $\topoBasisReals = \{ \epsBall{x}{\epsilon} \mid x \in \reals, \epsilon \in \realsplus\}$. \end{definition} \begin{axiom}\label{reals_carrier_reals} $\carrier[\reals] = \reals$. \end{axiom} \begin{lemma}\label{intervals_are_connected_in_reals} Suppose $a,b \in \reals$. Then for all $c \in \reals$ such that $a < c < b$ we have $c \in \intervalopen{a}{b}$. \end{lemma} \begin{lemma}\label{epsball_are_subset_reals_elem} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \reals$. \end{lemma} \begin{lemma}\label{intervalopen_iff} Suppose $a,b,c \in \reals$. Suppose $a < b$. $c \in \intervalopen{a}{b}$ iff $a < c < b$. \end{lemma} \begin{lemma}\label{epsball_are_subseteq_reals_set} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then $\epsBall{x}{\epsilon} \subseteq \reals$. \end{lemma} \begin{lemma}\label{epsball_are_subset_reals_set} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then $\epsBall{x}{\epsilon} \subset \reals$. \end{lemma} \begin{lemma}\label{reals_order_minus_positiv} Suppose $x,y \in \reals$. Suppose $\zero < y$. $x - y < x$. \end{lemma} \begin{lemma}\label{realsplus_bigger_zero} For all $x \in \realsplus$ we have $\zero < x$. \end{lemma} \begin{lemma}\label{realsplus_in_reals} For all $x \in \realsplus$ we have $x \in \reals$. \end{lemma} \begin{lemma}\label{epsball_are_inhabited} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then $\epsBall{x}{\epsilon}$ is inhabited. \end{lemma} \begin{proof} $x < x + \epsilon$. $x - \epsilon < x$. $x \in \epsBall{x}{\epsilon}$. \end{proof} \begin{lemma}\label{reals_elem_inbetween} For all $a,b \in \reals$ such that $a < b$ we have there exists $c \in \reals$ such that $a < c < b$. \end{lemma} \begin{lemma}\label{epsball_equal_openinterval} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then $\epsBall{x}{\epsilon} = \intervalopen{x - \epsilon}{x + \epsilon}$. \end{lemma} \begin{lemma}\label{minus_behavior1} For all $x \in \reals$ we have $x - x = \zero$. \end{lemma} \begin{lemma}\label{minus_behavior2} For all $x \in \reals$ we have $x + \neg{x} = \zero$. \end{lemma} \begin{lemma}\label{minus_behavior3} For all $x \in \reals$ we have $\neg{x} = \zero - x$. \end{lemma} \begin{lemma}\label{reals_order_is_addition_with_positiv_number} For all $x,y \in \reals$ such that $x < y$ we have there exists $z \in \realsplus$ such that $x + z = y$. \end{lemma} \begin{proof} %Fix $x,y \in \reals$. \end{proof} \begin{lemma}\label{reals_order_is_transitive} For all $x,y,z \in \reals$ such that $x < y$ and $y < z$ we have $x < z$. \end{lemma} \begin{lemma}\label{reals_order_plus_minus} Suppose $a,b \in \reals$. Suppose $\zero < b$. Then $(a-b) < (a+b)$. \end{lemma} \begin{proof} We show that $a < (a+b)$. \begin{subproof} Trivial. \end{subproof} We show that $(a-b) < a$. \begin{subproof} Trivial. \end{subproof} \end{proof} \begin{lemma}\label{epsball_are_connected_in_reals} Suppose $x \in \reals$. Suppose $\epsilon \in \realsplus$. Then for all $c \in \reals$ such that $(x - \epsilon) < c < (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$. \end{lemma} \begin{proof} $x - \epsilon \in \reals$. $x + \epsilon \in \reals$. It suffices to show that for all $c$ such that $c \in \reals \land (x - \epsilon) < c < (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$. %Fix $c$ such that $c \in \reals \land (x - \epsilon) < c < (x + \epsilon)$. %Suppose $(x - \epsilon) < c < (x + \epsilon)$. \end{proof} \begin{theorem}\label{topological_basis_reals_is_prebasis} $\topoBasisReals$ is a topological prebasis for $\reals$. \end{theorem} \begin{proof} We show that $\unions{\topoBasisReals} \subseteq \reals$. \begin{subproof} It suffices to show that for all $x \in \unions{\topoBasisReals}$ we have $x \in \reals$. Fix $x \in \unions{\topoBasisReals}$. \begin{byCase} \caseOf{$x = \emptyset$.} Trivial. \caseOf{$x \neq \emptyset$.} There exists $U \in \topoBasisReals$ such that $x \in \topoBasisReals$. Take $U \in \topoBasisReals$ such that $x \in \topoBasisReals$. \end{byCase} \end{subproof} We show that $\reals \subseteq \unions{\topoBasisReals}$. \begin{subproof} It suffices to show that for all $x \in \reals$ we have $x \in \unions{\topoBasisReals}$. Fix $x \in \reals$. $\epsBall{x}{1} \in \topoBasisReals$. Therefore $x \in \unions{\topoBasisReals}$. \end{subproof} \end{proof} \begin{theorem}\label{topological_basis_reals_is_basis} $\topoBasisReals$ is a topological basis for $\reals$. \end{theorem} \begin{proof} $\topoBasisReals$ is a topological prebasis for $\reals$ by \cref{topological_basis_reals_is_prebasis}. Let $B = \topoBasisReals$. It suffices to show that for all $U \in B$ we have for all $V \in B$ we have for all $x$ such that $x \in U, V$ there exists $W\in B$ such that $x\in W\subseteq U, V$. Fix $U \in B$. Fix $V \in B$. It suffices to show that for all $x \in U \inter V$ there exists $W\in B$ such that $x\in W\subseteq U, V$. Fix $x \in U \inter V$. \begin{byCase} \caseOf{$U \inter V = \emptyset$.} Trivial. \caseOf{$U \inter V \neq \emptyset$.} Then $U \inter V$ is inhabited. %It suffices to show that \end{byCase} \end{proof} \begin{axiom}\label{topological_space_reals} $\opens[\reals] = \genOpens{\topoBasisReals}{\reals}$. \end{axiom} \begin{theorem}\label{reals_is_topological_space} $\reals$ is a topological space. \end{theorem} \begin{proof} $\topoBasisReals$ is a topological basis for $\reals$. Let $B = \topoBasisReals$. We show that $\opens[\reals]$ is a family of subsets of $\carrier[\reals]$. \begin{subproof} It suffices to show that for all $A \in \opens[\reals]$ we have $A \subseteq \reals$. Fix $A \in \opens[\reals]$. Follows by \cref{powerset_elim,topological_space_reals,genopens}. \end{subproof} We show that $\reals \in\opens[\reals]$. \begin{subproof} $B$ covers $\reals$ by \cref{topological_prebasis_iff_covering_family,topological_basis}. $\unions{B} \in \genOpens{B}{\reals}$. $\reals \subseteq \unions{B}$. \end{subproof} We show that for all $A, B\in \opens[\reals]$ we have $A\inter B\in\opens[\reals]$. \begin{subproof} Follows by \cref{topological_space_reals,inters_in_genopens}. \end{subproof} We show that for all $F\subseteq \opens[\reals]$ we have $\unions{F}\in\opens[\reals]$. \begin{subproof} Follows by \cref{topological_space_reals,union_in_genopens}. \end{subproof} $\carrier[\reals] = \reals$. Follows by \cref{topological_space}. \end{proof} \begin{proposition}\label{open_interval_is_open} Suppose $a,b \in \reals$. Then $\intervalopen{a}{b} \in \opens[\reals]$. \end{proposition} \begin{lemma}\label{safetwo} Contradiction. \end{lemma}