\import{set.tex} \import{set/cons.tex} \import{set/powerset.tex} \import{set/fixpoint.tex} \import{set/product.tex} \import{topology/topological-space.tex} \import{topology/separation.tex} \import{topology/continuous.tex} \import{topology/basis.tex} \import{numbers.tex} \import{function.tex} \section{The canonical topology on $\mathbbR$} \begin{definition}\label{topological_basis_reals_eps_ball} $\topoBasisReals = \{ \epsBall{x}{\epsilon} \mid x \in \reals, \epsilon \in \realsplus\}$. \end{definition} \begin{axiom}\label{reals_carrier_reals} $\carrier[\reals] = \reals$. \end{axiom} \begin{theorem}\label{topological_basis_reals_is_prebasis} $\topoBasisReals$ is a topological prebasis for $\reals$. \end{theorem} \begin{proof} We show that $\unions{\topoBasisReals} \subseteq \reals$. \begin{subproof} It suffices to show that for all $x \in \unions{\topoBasisReals}$ we have $x \in \reals$. Fix $x \in \unions{\topoBasisReals}$. \end{subproof} We show that $\reals \subseteq \unions{\topoBasisReals}$. \begin{subproof} It suffices to show that for all $x \in \reals$ we have $x \in \unions{\topoBasisReals}$. Fix $x \in \reals$. \end{subproof} \end{proof} \begin{theorem}\label{topological_basis_reals_is_basis} $\topoBasisReals$ is a topological basis for $\reals$. \end{theorem} \begin{proof} $\topoBasisReals$ is a topological prebasis for $\reals$ by \cref{topological_basis_reals_is_prebasis}. Let $B = \topoBasisReals$. It suffices to show that for all $U \in B$ we have for all $V \in B$ we have for all $x$ such that $x \in U, V$ there exists $W\in B$ such that $x\in W\subseteq U, V$. Fix $U \in B$. Fix $V \in B$. Fix $x \in U, V$. \end{proof} \begin{axiom}\label{topological_space_reals} $\opens[\reals] = \genOpens{\topoBasisReals}{\reals}$. \end{axiom} \begin{theorem}\label{reals_is_topological_space} $\reals$ is a topological space. \end{theorem} \begin{proof} $\topoBasisReals$ is a topological basis for $\reals$. Let $B = \topoBasisReals$. We show that $\opens[\reals]$ is a family of subsets of $\carrier[\reals]$. \begin{subproof} It suffices to show that for all $A \in \opens[\reals]$ we have $A \subseteq \reals$. Fix $A \in \opens[\reals]$. Follows by \cref{powerset_elim,topological_space_reals,genopens}. \end{subproof} We show that $\reals \in\opens[\reals]$. \begin{subproof} $B$ covers $\reals$ by \cref{topological_prebasis_iff_covering_family,topological_basis}. $\unions{B} \in \genOpens{B}{\reals}$. $\reals \subseteq \unions{B}$. \end{subproof} We show that for all $A, B\in \opens[\reals]$ we have $A\inter B\in\opens[\reals]$. \begin{subproof} Follows by \cref{topological_space_reals,inters_in_genopens}. \end{subproof} We show that for all $F\subseteq \opens[\reals]$ we have $\unions{F}\in\opens[\reals]$. \begin{subproof} Follows by \cref{topological_space_reals,union_in_genopens}. \end{subproof} $\carrier[\reals] = \reals$. Follows by \cref{topological_space}. \end{proof} \begin{proposition}\label{open_interval_is_open} Suppose $a,b \in \reals$. Then $\intervalopen{a}{b} \in \opens[\reals]$. \end{proposition}