\import{topology/topological-space.tex} \import{set.tex} % T0 separation \begin{definition}\label{is_kolmogorov} $X$ is Kolmogorov iff for all $x,y\in\carrier[X]$ such that $x\neq y$ there exist $U\in\opens[X]$ such that $x\in U\not\ni y$ or $x\notin U\ni y$. \end{definition} \begin{abbreviation}\label{kolmogorov_space} $X$ is a Kolmogorov space iff $X$ is a topological space and $X$ is Kolmogorov. \end{abbreviation} \begin{abbreviation}\label{teezero} $X$ is \teezero\ iff $X$ is Kolmogorov. \end{abbreviation} \begin{abbreviation}\label{teezero_space} $X$ is a \teezero-space iff $X$ is a Kolmogorov space. \end{abbreviation} \begin{proposition}\label{kolmogorov_implies_kolmogorov_for_closeds} Suppose $X$ is a Kolmogorov space. Let $x,y\in\carrier[X]$. Suppose $x\neq y$. Then there exist $A\in\closeds{X}$ such that $x\in A\not\ni y$ or $x\notin A\ni y$. \end{proposition} \begin{proof} Take $U\in\opens[X]$ such that $x\in U\not\ni y$ or $x\notin U\ni y$ by \cref{is_kolmogorov}. Then $\carrier[X]\setminus U\in\closeds{X}$ by \cref{complement_of_open_elem_closeds}. Now $x\in (\carrier[X]\setminus U)\not\ni y$ or $x\notin (\carrier[X]\setminus U)\ni y$ by \cref{setminus}. \end{proof} \begin{proposition}\label{kolmogorov_for_closeds_implies_kolmogorov} Suppose for all $x,y\in\carrier[X]$ such that $x\neq y$ there exist $U\in\closeds{X}$ such that $x\in U\not\ni y$ or $x\notin U\ni y$. Then $X$ is Kolmogorov. \end{proposition} \begin{proof} Follows by \cref{closeds,is_closed_in,is_kolmogorov,setminus}. \end{proof} \begin{proposition}\label{kolmogorov_iff_kolmogorov_for_closeds} Let $X$ be a topological space. $X$ is Kolmogorov iff for all $x,y\in\carrier[X]$ such that $x\neq y$ there exist $U\in\closeds{X}$ such that $x\in U\not\ni y$ or $x\notin U\ni y$. \end{proposition} \begin{proof} Follows by \cref{kolmogorov_implies_kolmogorov_for_closeds,kolmogorov_for_closeds_implies_kolmogorov}. \end{proof} % T1 separation (Fréchet topology) \begin{definition}\label{teeone} $X$ is \teeone\ iff for all $x,y\in\carrier[X]$ such that $x\neq y$ there exist $U, V\in\opens[X]$ such that $U\ni x\notin V$ and $V\ni y\notin U$. \end{definition} \begin{abbreviation}\label{teeone_space} $X$ is a \teeone-space iff $X$ is a topological space and $X$ is \teeone. \end{abbreviation} \begin{proposition}\label{teeone_implies_singletons_closed} Let $X$ be a \teeone-space. Assume $x \in \carrier[X]$. Then $\{x\}$ is closed in $X$. \end{proposition} \begin{proof} Omitted. %Let $V = \{ U \in \opens[X] \mid x \notin U\}$. %For all $y \in \carrier[X]$ such that $x \neq y$ there exist $U \in \opens[X]$ such that $x \notin U \ni y$ by \cref{carrier_open,teeone}. %For all $y \in \carrier[X]$ such that $y \neq x$ there exists $U \in V$ such that $y \in U$. % %$\unions{V} \in \opens[X]$. %For all $y \in \carrier[X]$ such that $x \neq y$ we have $y \in \unions{V}$. %We show that $\carrier[X] \setminus \{x\} = \unions{V}$. %\begin{subproof} % We show that for all $y \in \carrier[X] \setminus \{x\}$ we have $y \in \unions{V}$. % \begin{subproof} % Fix $y \in \carrier[X] \setminus \{x\}$. % $y \neq x$. % $y \in \carrier[X]$. % $y \in \unions{V}$. % \end{subproof} % For all $y \in \unions{V}$ we have $y \notin \{x\}$. % For all $y \in \unions{V}$ we have $y \in \carrier[X] \setminus \{x\}$. % Follows by set extensionality. %\end{subproof} \end{proof} % % Conversely, if \{x\} is open, then for any y distinct from x we can use % X\setminus\{x\} as the open neighbourhood of y. % T2 separation \begin{definition}\label{is_hausdorff} $X$ is Hausdorff iff for all $x,y\in\carrier[X]$ such that $x\neq y$ there exist $U, V\in\opens[X]$ such that $x\in U$ and $y\in V$ and $U$ is disjoint from $V$. \end{definition} \begin{abbreviation}\label{hausdorff_space} $X$ is a Hausdorff space iff $X$ is a topological space and $X$ is Hausdorff. \end{abbreviation} \begin{abbreviation}\label{teetwo} $X$ is \teetwo\ iff $X$ is Hausdorff. \end{abbreviation} \begin{abbreviation}\label{teetwo_space} $X$ is a \teetwo-space iff $X$ is a Hausdorff space. \end{abbreviation} \begin{proposition}\label{teeone_space_is_teezero_space} Let $X$ be a \teeone-space. Then $X$ is a \teezero-space. \end{proposition} \begin{proof} Follows by \cref{is_kolmogorov,teeone}. \end{proof} \begin{proposition}\label{teetwo_space_is_teeone_space} Let $X$ be a \teetwo-space. Then $X$ is a \teeone-space. \end{proposition} \begin{proof} We show that for all $x,y\in\carrier[X]$ such that $x\neq y$ there exist $U, V\in\opens[X]$ such that $U\ni x\notin V$ and $V\ni y\notin U$. \begin{subproof} $X$ is hausdorff. For all $x,y\in\carrier[X]$ such that $x\neq y$ there exist $U, V\in\opens[X]$ such that $x\in U$ and $y\in V$ and $U$ is disjoint from $V$. \end{subproof} \end{proof} \begin{definition}\label{is_regular} $X$ is regular iff for all $C,p$ such that $p \in \carrier[X]$ and $p \notin C \in \closeds{X}$ we have there exists $U,C \in \opens[X]$ such that $p \in U$ and $C \subseteq V$ and $U \inter V = \emptyset$. \end{definition} \begin{abbreviation}\label{regular_space} $X$ is a regular space iff $X$ is a topological space and $X$ is regular. \end{abbreviation} \begin{abbreviation}\label{teethree} $X$ is \teethree\ iff $X$ is regular and $X$ is \teezero\ . \end{abbreviation} \begin{abbreviation}\label{teethree_space} $X$ is a \teethree-space iff $X$ is a topological space and $X$ is \teethree\ . \end{abbreviation} \begin{proposition}\label{teethree_implies_closed_neighbourhood_in_open} Let $X$ be a topological space. Suppose $X$ is inhabited. Suppose $X$ is \teethree\ . For all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$. \end{proposition} \begin{proof} Omitted. %%Suppose $X$ is regular and kolmogorov. %Fix $U \in \opens[X]$. %Fix $x \in U$. %Let $C = \carrier[X] \setminus U$. %Then $C \in \closeds{X}$. %$x \notin C$. %$x \in \carrier[X]$. %We show that there exists $A,B \in \opens[X]$ such that $x \in B$ and $C \subseteq A$ and $A \inter B = \emptyset$. %We show that $B \subseteq (\carrier[X] \setminus A)$. %$(\carrier[X] \setminus A) \subseteq (\carrier[X] \setminus (\carrier[X] \setminus U))$. %$(\carrier[X] \setminus (\carrier[X] \setminus U)) = U$. %$x \in B \subseteq (\carrier[X] \setminus A) \subseteq U$. %Let $N = (\carrier[X] \setminus A)$. %Then $N \in \closeds{X}$ and $x \in N$ and $N \subseteq U$. %$N \in \neighbourhoods{x}{X}$. \end{proof} \begin{proposition}\label{teethree_iff_each_closed_is_intersection_of_its_closed_neighborhoods} Let $X$ be a topological space. Suppose $X$ is inhabited. $X$ is \teethree\ iff for all $H \in \closeds{X}$ such that $F = \{ N \in \neighbourhoodsSet{H}{X} \mid N \in \closeds{X}\}$ we have $H = \inters{F}$. \end{proposition} \begin{proof} We show that if $X$ is \teethree\ then for all $H \in \closeds{X}$ such that $F = \{ N \in \neighbourhoodsSet{H}{X} \mid N \in \closeds{X}\}$ we have $H = \inters{F}$. \begin{subproof} %For all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$. Omitted. \end{subproof} We show that if for all $H \in \closeds{X}$ such that $F = \{ N \in \neighbourhoodsSet{H}{X} \mid N \in \closeds{X}\}$ we have $H = \inters{F}$ then $X$ is \teethree\ . \begin{subproof} Omitted. \end{subproof} \end{proof} \begin{proposition}\label{teethree_iff_closed_neighbourhood_in_open} Let $X$ be a topological space. Suppose $X$ is inhabited. $X$ is \teethree\ iff for all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$. \end{proposition} \begin{proof} Omitted. %Follows by \cref{teethree_iff_each_closed_is_intersection_of_its_closed_neighborhoods,teethree_implies_closed_neighbourhood_in_open}. \end{proof} \begin{proposition}\label{teethree_space_is_teetwo_space} Let $X$ be a \teethree-space. Suppose $X$ is inhabited. Then $X$ is a \teetwo-space. \end{proposition} \begin{proof} Omitted. \end{proof} For all $x,y \in \carrier[X]$ such that $x \neq y$ we have $x \notin \{y\}$. It suffices to show that $X$ is hausdorff. It suffices to show that for all $x \in \carrier[X]$ we have for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$. Fix $x \in \carrier[X]$. It suffices to show that for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$. Fix $y \in \carrier[X]$. We show that there exist $U,V,C$ such that $U,V \in \opens[X]$ and $C\in \closeds{X}$ and $x \in U$ and $y \in C \subseteq V$ and $U$ is disjoint from $V$. \begin{subproof} There exist $C' \in \closeds{X}$ such that $x \in \carrier[X]$ and $x \notin C' \in \closeds{X}$ and there exists $U',V' \in \opens[X]$ such that $x \in U'$ and $C' \subseteq V'$ and $U' \inter V' = \emptyset$. There exists $U',V' \in \opens[X]$ such that $x \in U'$ and $C' \subseteq V'$ and $U' \inter V' = \emptyset$. $U'$ is disjoint from $V'$. $x \in U'$. $x \notin C' \subseteq V'$. $U',V' \in \opens[X]$. $C' \in \closeds{X}$. We show that there exist $K \in \closeds{X}$ such that $x \notin K \ni y$. \begin{subproof} $X$ is Kolmogorov. For all $x',y'\in\carrier[X]$ such that $x'\neq y'$ there exist $H\in\opens[X]$ such that $x'\in H\not\ni y'$ or $x'\notin H\ni y'$. we show that there exist $H \in \opens[X]$ such that $x \notin H \ni y$ or $y \notin H \ni x$. \begin{subproof} Omitted. \end{subproof} $H \subseteq \carrier[X]$ by \cref{opens_type,subseteq}. Since $\carrier[X] \ni x \notin H$ or $\carrier[X] \ni y \notin H$, we have there exist $c \in H$. Then $H \neq \carrier[X]$. Since $y \in H$ or $x \in H$, we have $H \neq \emptyset$. Let $K = \carrier[X] \setminus H$. $K$ is inhabited. $K \in \closeds{X}$ by \cref{complement_of_open_is_closed}. $x \notin K \ni y$ or $y \notin K \ni x$. \begin{byCase} \caseOf{$y \in K$.} Trivial. \caseOf{$y \notin K$.} Then there exist $U'',V'' \in \opens[X]$ such that $x \in U''$ and $K \subseteq V''$ and $U'' \inter V'' = \emptyset$ by \cref{is_regular}. Let $K' = \carrier[X] \setminus U''$. $x \in K'$. $K' \in \closeds{X}$. \end{byCase} \end{subproof} Follows by assumption. \end{subproof} $y \in V$ by assumption. Follows by assumption. %\end{proof}