\import{topology/topological-space.tex} % T0 separation \begin{definition}\label{is_kolmogorov} $X$ is Kolmogorov iff for all $x,y\in\carrier[X]$ such that $x\neq y$ there exist $U\in\opens[X]$ such that $x\in U\not\ni y$ or $x\notin U\ni y$. \end{definition} \begin{abbreviation}\label{kolmogorov_space} $X$ is a Kolmogorov space iff $X$ is a topological space and $X$ is Kolmogorov. \end{abbreviation} \begin{abbreviation}\label{teezero} $X$ is \teezero\ iff $X$ is Kolmogorov. \end{abbreviation} \begin{abbreviation}\label{teezero_space} $X$ is a \teezero-space iff $X$ is a Kolmogorov space. \end{abbreviation} \begin{proposition}\label{kolmogorov_implies_kolmogorov_for_closeds} Suppose $X$ is a Kolmogorov space. Let $x,y\in\carrier[X]$. Suppose $x\neq y$. Then there exist $A\in\closeds{X}$ such that $x\in A\not\ni y$ or $x\notin A\ni y$. \end{proposition} \begin{proof} Take $U\in\opens[X]$ such that $x\in U\not\ni y$ or $x\notin U\ni y$ by \cref{is_kolmogorov}. Then $\carrier[X]\setminus U\in\closeds{X}$ by \cref{complement_of_open_elem_closeds}. Now $x\in (\carrier[X]\setminus U)\not\ni y$ or $x\notin (\carrier[X]\setminus U)\ni y$ by \cref{setminus}. \end{proof} \begin{proposition}\label{kolmogorov_for_closeds_implies_kolmogorov} Suppose for all $x,y\in\carrier[X]$ such that $x\neq y$ there exist $U\in\closeds{X}$ such that $x\in U\not\ni y$ or $x\notin U\ni y$. Then $X$ is Kolmogorov. \end{proposition} \begin{proof} Follows by \cref{closeds,is_closed_in,is_kolmogorov,setminus}. \end{proof} \begin{proposition}\label{kolmogorov_iff_kolmogorov_for_closeds} Let $X$ be a topological space. $X$ is Kolmogorov iff for all $x,y\in\carrier[X]$ such that $x\neq y$ there exist $U\in\closeds{X}$ such that $x\in U\not\ni y$ or $x\notin U\ni y$. \end{proposition} \begin{proof} Follows by \cref{kolmogorov_implies_kolmogorov_for_closeds,kolmogorov_for_closeds_implies_kolmogorov}. \end{proof} % T1 separation (Fréchet topology) \begin{definition}\label{teeone} $X$ is \teeone\ iff for all $x,y\in\carrier[X]$ such that $x\neq y$ there exist $U, V\in\opens[X]$ such that $U\ni x\notin V$ and $V\ni y\notin U$. \end{definition} \begin{abbreviation}\label{teeone_space} $X$ is a \teeone-space iff $X$ is a topological space and $X$ is \teeone. \end{abbreviation} \begin{proposition}\label{teeone_implies_singletons_closed} Let $X$ be a \teeone-space. Assume $x \in \carrier[X]$. Then $\{x\}$ is closed in $X$. %Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$. Ambigus Phrase. if Omitted is ereased. \end{proposition} \begin{proof} %Omitted. %Fix $x \in X$. Let $V = \{ U \in \opens[X] \mid x \notin U\}$. For all $y \in \carrier[X]$ such that $x \neq y$ there exist $U \in \opens[X]$ such that $x \notin U \ni y$. For all $y \in \carrier[X]$ such that $y \neq x$ there exists $U \in V$ such that $y \in U$. $\unions{V} \in \opens[X]$. For all $y \in \carrier[X]$ such that $x \neq y$ we have $y \in \unions{V}$. We show that $\carrier[X] \setminus \{x\} = \unions{V}$. \begin{subproof} We show that for all $y \in \carrier[X] \setminus \{x\}$ we have $y \in \unions{V}$. \begin{subproof} Fix $y \in \carrier[X] \setminus \{x\}$. $y \neq x$. $y \in \carrier[X]$. $y \in \unions{V}$. \end{subproof} For all $y \in \unions{V}$ we have $y \notin \{x\}$. For all $y \in \unions{V}$ we have $y \in \carrier[X] \setminus \{x\}$. Follows by set extensionality. \end{subproof} % Let $U_{y} \in \opens[X]$ such that $x \neq y \in X$. Error: unexpected '{' expecting digit %For all $y$ there exists $U$ such that $x \neq y$ and $y \in U$ and $U \in \opens[X]$. % TODO % Choose for every y distinct from x and open subset U_y containing y but not x. % The union U of all the U_y is open. % {x} is the complement of U in \carrier[X]. \end{proof} % % Conversely, if \{x\} is open, then for any y distinct from x we can use % X\setminus\{x\} as the open neighbourhood of y. % T2 separation \begin{definition}\label{is_hausdorff} $X$ is Hausdorff iff for all $x,y\in\carrier[X]$ such that $x\neq y$ there exist $U, V\in\opens[X]$ such that $x\in U$ and $y\in V$ and $U$ is disjoint from $V$. \end{definition} \begin{abbreviation}\label{hausdorff_space} $X$ is a Hausdorff space iff $X$ is a topological space and $X$ is Hausdorff. \end{abbreviation} \begin{abbreviation}\label{teetwo} $X$ is \teetwo\ iff $X$ is Hausdorff. \end{abbreviation} \begin{abbreviation}\label{teetwo_space} $X$ is a \teetwo-space iff $X$ is a Hausdorff space. \end{abbreviation} \begin{proposition}\label{teeone_space_is_teezero_space} Let $X$ be a \teeone-space. Then $X$ is a \teezero-space. \end{proposition} \begin{proof} Follows by \cref{is_kolmogorov,teeone}. \end{proof} \begin{proposition}\label{teetwo_space_is_teeone_space} Let $X$ be a \teetwo-space. Then $X$ is a \teeone-space. \end{proposition} \begin{proof} Omitted. % TODO \end{proof}