\import{set.tex} \import{set/powerset.tex} \import{set/cons.tex} \section{Topological spaces}\label{form_sec_topospaces} \begin{struct}\label{topological_space} A topological space $X$ is a onesorted structure equipped with \begin{enumerate} \item $\opens$ \end{enumerate} such that \begin{enumerate} \item\label{opens_type} $\opens[X]$ is a family of subsets of $\carrier[X]$. \item\label{carrier_open} $\carrier[X]\in\opens[X]$. \item\label{opens_inter} For all $A, B\in \opens[X]$ we have $A\inter B\in\opens[X]$. \item\label{opens_unions} For all $F\subseteq \opens[X]$ we have $\unions{F}\in\opens[X]$. \end{enumerate} \end{struct} \begin{abbreviation}\label{is_open_in} $U$ is open iff $U\in\opens$. \end{abbreviation} \begin{abbreviation}\label{is_open} $U$ is open in $X$ iff $U\in\opens[X]$. \end{abbreviation} \begin{proposition}\label{emptyset_open} Let $X$ be a topological space. Then $\emptyset$ is open in $X$. \end{proposition} \begin{proof} We have $\unions{\emptyset} = \emptyset\subseteq\opens[X]$ by \cref{unions_emptyset,emptyset_subseteq}. Follows by \cref{opens_unions}. \end{proof} \begin{proposition}\label{union_open} Let $X$ be a topological space. Suppose $A$, $B$ are open. Then $A\union B$ is open. \end{proposition} \begin{proof} $\{A, B\}\subseteq \opens$. $\unions{\{A, B\}}$ is open. $\unions{\{A, B\}} = A\union B$. \end{proof} \begin{definition}[Interiors]\label{interiors} $\interiors{A}{X} = \{ U\in\opens[X]\mid U\subseteq A\}$. \end{definition} \begin{definition}[Interior]\label{interior} $\interior{A}{X} = \unions{\interiors{A}{X}}$. \end{definition} \begin{proposition}[Interior]\label{interior_elem_intro} Suppose $U\in\opens[X]$ and $a\in U\subseteq A$. Then $a\in\interior{A}{X}$. \end{proposition} \begin{proof} $U\in\interiors{A}{X}$. \end{proof} \begin{proposition}[Interior]\label{interior_elem_elim} Suppose $a\in\interior{A}{X}$. Then there exists $U\in\opens[X]$ such that $a\in U\subseteq A$. \end{proposition} \begin{proof} Omitted. %Take $U\in\interiors{A}{X}$ such that $a\in U$. \end{proof} \begin{proposition}[Interior]\label{interior_elem_iff} $a\in\interior{A}{X}$ iff there exists $U\in\opens[X]$ such that $a\in U\subseteq A$. \end{proposition} \begin{proof} Follows by \cref{interior_elem_intro,interior_elem_elim}. \end{proof} \begin{proposition}\label{interior_of_open} Let $X$ be a topological space. Suppose $U$ is open in $X$. Then $\interior{U}{X} = U$. \end{proposition} \begin{proof} $U\in\interiors{U}{X}$. Follows by \cref{subseteq,interior_elem_iff,neq_witness}. \end{proof} \begin{proposition}\label{interior_is_open} Let $X$ be a topological space. Then $\interior{A}{X}$ is open. \end{proposition} \begin{proof} $\interiors{A}{X}\subseteq\opens[X]$. \end{proof} \begin{proposition}\label{interior_subseteq} Then $\interior{A}{X}\subseteq A$. \end{proposition} \begin{proposition}\label{interior_maximal} Let $X$ be a topological space. Suppose $U\subseteq A\subseteq \carrier[X]$. Suppose $U$ is open. Then $U\subseteq \interior{A}{X}$. \end{proposition} \begin{proposition}\label{interior_eq_self_implies_open} Let $X$ be a topological space. Suppose $\interior{A}{X} = A$. Then $A$ is open. \end{proposition} \begin{corollary}\label{interior_eq_self_iff_open} Let $X$ be a topological space. Then $\interior{A}{X} = A$ iff $A$ is open in $X$. \end{corollary} \begin{proposition}\label{interior_carrier} Let $X$ be a topological space. $\interior{\carrier[X]}{X} = \carrier[X]$. \end{proposition} \begin{proof} $\carrier[X]\in\opens[X]$. $\carrier[X]\subseteq\carrier[X]$ by \cref{subseteq_refl}. Thus $\carrier[X]\in\interiors{\carrier[X]}{X}$ by \cref{interiors}. Follows by set extensionality. \end{proof} \begin{proposition}\label{interior_type} Let $X$ be a topological space. Then $\interior{A}{X}\in\pow{\carrier[X]}$. \end{proposition} \begin{proof} We have $\interiors{A}{X}\subseteq \pow{\carrier[X]}$. % As they are open subsets of X containing A % Thus $\interior{A}{X}\subseteq \carrier[X]$ by \cref{interior,unions_subseteq_of_powerset_is_subseteq}. \end{proof} \subsection{Closed sets} \begin{definition}\label{is_closed_in} $A$ is closed in $X$ iff $\carrier[X]\setminus A$ is open in $X$. \end{definition} \begin{abbreviation}\label{is_clopen_in} $A$ is clopen in $X$ iff $A$ is open in $X$ and closed in $X$. \end{abbreviation} \begin{proposition}\label{emptyset_is_closed} Let $X$ be a topological space. Then $\emptyset$ is closed in $X$. \end{proposition} \begin{proof} $\carrier[X]\setminus \emptyset = \carrier[X]$. \end{proof} \begin{proposition}\label{carrier_is_closed} Let $X$ be a topological space. Then $\carrier[X]$ is closed in $X$. \end{proposition} \begin{proof} $\carrier[X]\setminus \carrier[X] = \emptyset$. Follows by \cref{emptyset_open,is_closed_in}. \end{proof} \begin{proposition}\label{opens_minus_closed_is_open} Let $X$ be a topological space. Suppose $A, B \subseteq \carrier[X]$. Suppose $A$ is open in $X$. Suppose $B$ is closed in $X$. Then $A \setminus B$ is open in $X$. \end{proposition} \begin{proof} Follows by \cref{setminus_eq_emptyset_iff_subseteq,is_closed_in,opens_inter,inter_comm_left,setminus_union,inter_assoc,inter_setminus,inter_lower_left,inter_lower_right,setminus_subseteq,double_complement,setminus_setminus,setminus_eq_inter_complement,setminus_self,setminus_inter,union_comm,emptyset_subseteq,setminus_partition}. \end{proof} \begin{definition}[Closed sets]\label{closeds} $\closeds{X} = \{ A\in\pow{\carrier[X]}\mid\text{$A$ is closed in $X$}\}$. \end{definition} \begin{proposition}\label{complement_of_open_elem_closeds} Let $X$ be a topological space. Let $U\in\opens[X]$. Then $\carrier[X]\setminus U\in\closeds{X}$. \end{proposition} \begin{proof} $\carrier[X]\setminus U\in\pow{\carrier[X]}$. $U\subseteq\carrier[X]$ by \cref{opens_type}. Hence $\carrier[X]\setminus(\carrier[X]\setminus U) = U$ by \cref{double_relative_complement}. $\carrier[X]\setminus U$ is closed in $X$. \end{proof} \begin{definition}[Closed covers]\label{closures} $\closures{A}{X} = \{ D\in\pow{\carrier[X]}\mid \text{$A\subseteq D$ and $D$ is closed in $X$}\}$. \end{definition} \begin{definition}[Closure]\label{closure} $\closure{A}{X} = \inters{\closures{A}{X}}$. \end{definition} \begin{proposition}\label{closure_emptyset} Let $X$ be a topological space. Then $\closure{\emptyset}{X} = \emptyset$. \end{proposition} \begin{proof} $\emptyset\in\closures{\emptyset}{X}$. \end{proof} \begin{proposition}\label{closure_carrier} Let $X$ be a topological space. Then $\closure{\carrier[X]}{X} = \carrier[X]$. \end{proposition} \begin{proof} %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X]\subseteq D$ by \cref{closures}. %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X]\supseteq D$ by \cref{pow_iff,closures}. %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X] = D$ by \cref{subseteq_antisymmetric}. For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X] = D$ by \cref{pow_iff,closures,subseteq_antisymmetric}. Now $\carrier[X]\in\closures{\carrier[X]}{X}$. Thus $\closures{\carrier[X]}{X} = \{\carrier[X]\}$ by \cref{singleton_iff_inhabited_subsingleton}. Follows by \cref{inters_singleton,closure}. \end{proof} \begin{proposition}\label{subseteq_inters_iff_to_right} Let $A,F$ be sets. Suppose $A \subseteq \inters{F}$. Then for all $X \in F$ we have $A \subseteq X$. \end{proposition} \begin{proposition}\label{subseteq_of_all_then_subset_of_union} Let $A,F$ be sets. Suppose $F$ is inhabited. %TODO: Remove!! Suppose for all $X \in F$ we have $A \subseteq X$. Then $A \subseteq \unions{F}$. \end{proposition} \begin{proof} There exist $X \in F$ such that $X \subseteq \unions{F}$. $A \subseteq X \subseteq \unions{F}$. \end{proof} \begin{proposition}\label{subseteq_inters_iff_to_left} Let $A,F$ be sets. Suppose $F$ is inhabited. % TODO:Remove!! Suppose for all $X \in F$ we have $A \subseteq X$. Then $A \subseteq \inters{F}$. \end{proposition} \begin{proof} \begin{byCase} \caseOf{$A = \emptyset$.}Trivial. \caseOf{$A \neq \emptyset$.} $F$ is inhabited. It suffices to show that for all $a \in A$ we have $a \in \inters{F}$. Fix $a \in A$. For all $X \in F$ we have $a \in X$. $A \subseteq \unions{F}$. $a \in \unions{F}$. \end{byCase} \end{proof} \begin{proposition}\label{subseteq_inters_iff_new} Suppose $F$ is inhabited. $A \subseteq \inters{F}$ iff for all $X \in F$ we have $A \subseteq X$. \end{proposition} \begin{proposition}\label{set_is_subseteq_to_closure_of_the_set} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. $A \subseteq \closure{A}{X}$. \end{proposition} \begin{proof} \begin{byCase} \caseOf{$A = \emptyset$.} Trivial. \caseOf{$A \neq \emptyset$.} We show that $\carrier[X] \in \closures{A}{X}$. \begin{subproof} $\carrier[X]$ is closed in $X$. $\carrier[X] \in \pow{\carrier[X]}$. \end{subproof} $\closures{A}{X}$ is inhabited. For all $A' \in \closures{A}{X}$ we have $A \subseteq A'$. Therefore $A \subseteq \inters{\closures{A}{X}}$. \end{byCase} \end{proof} \begin{proposition}\label{complement_of_closure_of_complement_of_x_subseteq_x} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. $(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \subseteq A$. \end{proposition} \begin{proof} It suffices to show that for all $x \in (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$ we have $x \in A$. If $x \in \carrier[X]\setminus A$ then $x \in \closure{(\carrier[X]\setminus A)}{X}$ by \cref{set_is_subseteq_to_closure_of_the_set,setminus_subseteq,elem_subseteq,setminus}. Follows by \cref{subseteq_setminus_cons_elim,cons_absorb,double_complement_union,union_as_unions,set_is_subseteq_to_closure_of_the_set,setminus_subseteq,setminus_intro,closure,setminus_elim_left}. \end{proof} \begin{proposition}\label{complement_of_closed_is_open} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. Suppose $A$ is closed in $X$. Then $\carrier[X] \setminus A$ is open in $X$. \end{proposition} \begin{proposition}\label{complement_of_open_is_closed} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. Suppose $A$ is open in $X$. Then $\carrier[X] \setminus A$ is closed in $X$. \end{proposition} \begin{proposition}\label{intersection_of_closed_is_closed} Let $X$ be a topological space. Suppose $A, B \subseteq \carrier[X]$. Suppose $A$ are closed in $X$. Suppose $B$ are closed in $X$. Then $A \inter B$ is closed in $X$. \end{proposition} \begin{proof} $\carrier[X] \setminus A, \carrier[X] \setminus B \in \opens[X]$. $(\carrier[X] \setminus A) \union (\carrier[X] \setminus B) \in \opens[X]$. $A \inter B = \carrier[X] \setminus ((\carrier[X] \setminus A) \union (\carrier[X] \setminus B))$. \end{proof} \begin{proposition}\label{union_of_closed_is_closed} Let $X$ be a topological space. Suppose $A, B \subseteq \carrier[X]$. Suppose $A$ are closed in $X$. Suppose $B$ are closed in $X$. Then $A \union B$ is closed in $X$. \end{proposition} \begin{proof} $\carrier[X] \setminus A, \carrier[X] \setminus B \in \opens[X]$. $(\carrier[X] \setminus A) \inter (\carrier[X] \setminus B) \in \opens[X]$. $A \union B = \carrier[X] \setminus ((\carrier[X] \setminus A) \inter (\carrier[X] \setminus B))$. \end{proof} \begin{proposition}\label{closed_minus_open_is_closed} Let $X$ be a topological space. Suppose $A, B \subseteq \carrier[X]$. Suppose $A$ is open in $X$. Suppose $B$ is closed in $X$. Then $B \setminus A$ is closed in $X$. \end{proposition} \begin{proposition}\label{intersection_of_closed_is_closed_infinite} Let $X$ be a topological space. Suppose $F \subseteq \pow{\carrier[X]}$. Suppose for all $A \in F$ we have $A$ is closed in $X$. Suppose $F$ is inhabited. Then $\inters{F}$ is closed in $X$. \end{proposition} \begin{proof} Let $F' = \{Y \in \pow{\carrier[X]} \mid \text{there exists $C \in F$ such that $Y = \carrier[X] \setminus C$ }\} $. For all $Y \in F'$ we have $Y$ is open in $X$. $\unions{F'}$ is open in $X$. $\unions{F'}, \inters{F} \subseteq \carrier[X]$. We show that $\inters{F} = \carrier[X] \setminus (\unions{F'})$. \begin{subproof} We show that for all $a \in \inters{F}$ we have $a \in \carrier[X] \setminus (\unions{F'})$. \begin{subproof} Fix $a \in \inters{F}$. $a \in \carrier[X]$. For all $A \in F$ we have $a \in A$. For all $A \in F$ we have $a \notin (\carrier[X] \setminus A)$. Then $a \notin \unions{F'}$. Therefore $a \in \carrier[X] \setminus (\unions{F'})$. \end{subproof} We show that for all $a \in \carrier[X] \setminus (\unions{F'})$ we have $a \in \inters{F}$. \begin{subproof} \begin{byCase} \caseOf{$\inters{F} = \emptyset$.} $F$ is inhabited. Take $U$ such that $U \in F$. Let $F'' = F \setminus \{U\}$. There exist $U' \in F'$ such that $U' = \carrier[X] \setminus U$. Omitted. \caseOf{$\inters{F} \neq \emptyset$.} Fix $a \in \carrier[X] \setminus (\unions{F'})$. $\inters{F}$ is inhabited. $a \in \carrier[X]$. $a \notin \unions{F'}$. For all $A \in F'$ we have $a \notin A$. For all $A \in F'$ we have $a \in (\carrier[X] \setminus A)$. For all $A \in F'$ there exists $Y \in F$ such that $Y = (\carrier[X] \setminus A)$ by \cref{setminus_setminus,inter_absorb_supseteq_left,pow_iff,subseteq}. For all $Y \in F $ there exists $A \in F'$ such that $a \in Y = (\carrier[X] \setminus A)$. For all $Y \in F$ we have $a \in Y$. Therefore $a \in \inters{F}$. \end{byCase} \end{subproof} Follows by set extensionality. \end{subproof} Follows by \cref{complement_of_open_is_closed}. \end{proof} \begin{proposition}\label{closure_is_closed} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. Then $\closure{A}{X}$ is closed in $X$. \end{proposition} \begin{proof} \begin{byCase} \caseOf{$\closure{A}{X} = \emptyset$.} Trivial. \caseOf{$\closure{A}{X} \neq \emptyset$.} $\closures{A}{X}$ is inhabited. $\closures{A}{X} \subseteq \pow{\carrier[X]}$. For all $B \in \closures{A}{X}$ we have $B$ is closed in $X$. $\inters{\closures{A}{X}}$ is closed in $X$. \end{byCase} \end{proof} \begin{proposition}\label{closure_is_minimal_closed_set} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. For all $Y \in \closeds{X}$ such that $A \subseteq Y$ we have $\closure{A}{X} \subseteq Y$. \end{proposition} \begin{proof} Follows by \cref{closure,closeds,inters_subseteq_elem,closures}. \end{proof} \begin{proposition}\label{interior_is_maximal} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. For all $Y \in \opens[X]$ such that $Y \subseteq A$ we have $Y \subseteq \interior{A}{X}$. \end{proposition} \begin{proposition}\label{complement_interior_eq_closure_complement} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. $\carrier[X]\setminus\interior{A}{X} = \closure{(\carrier[X]\setminus A)}{X}$. \end{proposition} \begin{proof} We show that for all $x \in \carrier[X]\setminus\interior{A}{X}$ we have $x \in \closure{(\carrier[X]\setminus A)}{X}$. \begin{subproof} Fix $x \in \carrier[X]\setminus\interior{A}{X}$. Suppose not. $x \notin \closure{(\carrier[X]\setminus A)}{X}$. $x \in \carrier[X]$. $(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \inter \closure{(\carrier[X]\setminus A)}{X} = \emptyset$. $x \in A$. $x \in A \inter (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$. $\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X} \in \opens[X]$. There exist $U \in \opens[X]$ such that $x \in U$ and $U\subseteq A$. $U \subseteq \interior{A}{X}$. Contradiction. \end{subproof} $\carrier[X]\setminus\interior{A}{X} \subseteq \closure{(\carrier[X]\setminus A)}{X}$. $\closure{(\carrier[X]\setminus A)}{X} \subseteq \carrier[X]\setminus\interior{A}{X}$. % SLOW by \cref{setminus_subseteq,interior_is_open,complement_of_open_elem_closeds,subseteq_implies_setminus_supseteq,closure_is_minimal_closed_set}. \end{proof} \begin{definition}[Frontier]\label{frontier} $\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. \end{definition} \begin{proposition}\label{closure_interior_frontier_is_in_carrier} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. Then $\closure{A}{X}, \interior{A}{X}, \frontier{A}{X} \subseteq \carrier[X]$. \end{proposition} \begin{proposition}\label{frontier_is_closed} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. Then $\frontier{A}{X}$ is closed in $X$. \end{proposition} \begin{proof} $\closure{A}{X}\setminus\interior{A}{X}$ is closed in $X$ by \cref{closure_interior_frontier_is_in_carrier,closure_is_closed,interior_is_open,closed_minus_open_is_closed}. \end{proof} \begin{proposition}\label{setdifference_eq_intersection_with_complement} Suppose $A,B \subseteq C$. Then $A \setminus B = A \inter (C \setminus B)$. \end{proposition} \begin{proposition}\label{frontier_as_inter} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. $\frontier{A}{X} = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. \end{proposition} \begin{proof} \begin{align*} \frontier{A}{X} \\ &= \closure{A}{X}\setminus\interior{A}{X} \\ &= \closure{A}{X} \inter (\carrier[X] \setminus \interior{A}{X}) \explanation{by \cref{setdifference_eq_intersection_with_complement,closure_interior_frontier_is_in_carrier}}\\ &= \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X} \explanation{by \cref{complement_interior_eq_closure_complement}} \end{align*} \end{proof} \begin{proposition}\label{frontier_of_emptyset} Let $X$ be a topological space. Then $\frontier{\emptyset}{X} = \emptyset$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{frontier_of_carrier} Let $X$ be a topological space. Then $\frontier{\carrier[X]}{X} = \emptyset$. \end{proposition} \begin{proof} $\frontier{\carrier[X]}{X} = \carrier[X]\setminus\carrier[X]$ by \cref{frontier,interior_carrier,closure_carrier}. Follows by \cref{setminus_self}. \end{proof} \begin{definition}\label{neighbourhoods} $\neighbourhoods{x}{X} = \{N\in\pow{\carrier[X]} \mid \exists U\in\opens[X]. x\in U\subseteq N\}$. \end{definition} \begin{definition}\label{neighbourhoods_set} $\neighbourhoodsSet{x}{X} = \{N\in\pow{\carrier[X]} \mid \exists U\in\opens[X]. x\subseteq U\subseteq N\}$. \end{definition}