\import{set.tex} \import{set/powerset.tex} \section{Topological spaces} \begin{struct}\label{topological_space} A topological space $X$ is a onesorted structure equipped with \begin{enumerate} \item $\opens$ \end{enumerate} such that \begin{enumerate} \item\label{opens_type} $\opens[X]$ is a family of subsets of $\carrier[X]$. \item\label{emptyset_open} $\emptyset\in\opens[X]$. \item\label{carrier_open} $\carrier[X]\in\opens[X]$. \item\label{opens_inter} For all $A, B\in \opens[X]$ we have $A\inter B\in\opens[X]$. \item\label{opens_unions} For all $F\subseteq \opens[X]$ we have $\unions{F}\in\opens[X]$. \end{enumerate} \end{struct} \begin{abbreviation}\label{is_open_in} $U$ is open iff $U\in\opens$. \end{abbreviation} \begin{abbreviation}\label{is_open} $U$ is open in $X$ iff $U\in\opens[X]$. \end{abbreviation} \begin{proposition}\label{union_open} Let $X$ be a topological space. Suppose $A$, $B$ are open. Then $A\union B$ is open. \end{proposition} \begin{proof} $\{A, B\}\subseteq \opens$. $\unions{\{A, B\}}$ is open. $\unions{\{A, B\}} = A\union B$. \end{proof} \begin{definition}[Interiors]\label{interiors} $\interiors{A}{X} = \{ U\in\opens[X]\mid U\subseteq A\}$. \end{definition} \begin{definition}[Interior]\label{interior} $\interior{A}{X} = \unions{\interiors{A}{X}}$. \end{definition} \begin{proposition}[Interior]\label{interior_elem_intro} Suppose $U\in\opens[X]$ and $a\in U\subseteq A$. Then $a\in\interior{A}{X}$. \end{proposition} \begin{proof} $U\in\interiors{A}{X}$. \end{proof} \begin{proposition}[Interior]\label{interior_elem_elim} Suppose $a\in\interior{A}{X}$. Then there exists $U\in\opens[X]$ such that $a\in U\subseteq A$. \end{proposition} \begin{proof} Take $U\in\interiors{A}{X}$ such that $a\in U$. \end{proof} \begin{proposition}[Interior]\label{interior_elem_iff} $a\in\interior{A}{X}$ iff there exists $U\in\opens[X]$ such that $a\in U\subseteq A$. \end{proposition} \begin{proof} Follows by \cref{interior_elem_intro,interior_elem_elim}. \end{proof} \begin{proposition}\label{interior_of_open} Let $X$ be a topological space. Suppose $U$ is open in $X$. Then $\interior{U}{X} = U$. \end{proposition} \begin{proof} $U\in\interiors{U}{X}$. Follows by \cref{subseteq,interior_elem_iff,neq_witness}. \end{proof} \begin{proposition}\label{interior_is_open} Let $X$ be a topological space. Then $\interior{A}{X}$ is open. \end{proposition} \begin{proof} $\interiors{A}{X}\subseteq\opens[X]$. \end{proof} \begin{proposition}\label{interior_subseteq} Then $\interior{A}{X}\subseteq A$. \end{proposition} \begin{proposition}\label{interior_maximal} Let $X$ be a topological space. Suppose $U\subseteq A\subseteq \carrier[X]$. Suppose $U$ is open. Then $U\subseteq \interior{A}{X}$. \end{proposition} \begin{proposition}\label{interior_eq_self_implies_open} Let $X$ be a topological space. Suppose $\interior{A}{X} = A$. Then $A$ is open. \end{proposition} \begin{corollary}\label{interior_eq_self_iff_open} Let $X$ be a topological space. Then $\interior{A}{X} = A$ iff $A$ is open in $X$. \end{corollary} \begin{proposition}\label{interior_carrier} Let $X$ be a topological space. $\interior{\carrier[X]}{X} = \carrier[X]$. \end{proposition} \begin{proof} $\carrier[X]\in\opens[X]$. $\carrier[X]\subseteq\carrier[X]$ by \cref{subseteq_refl}. Thus $\carrier[X]\in\interiors{\carrier[X]}{X}$ by \cref{interiors}. Follows by set extensionality. \end{proof} \begin{proposition}\label{interior_type} Let $X$ be a topological space. Then $\interior{A}{X}\in\pow{\carrier[X]}$. \end{proposition} \begin{proof} We have $\interiors{A}{X}\subseteq \pow{\carrier[X]}$. % As they are open subsets of X containing A % Thus $\interior{A}{X}\subseteq \carrier[X]$ by \cref{interior,unions_subseteq_of_powerset_is_subseteq}. \end{proof} \subsection{Closed sets} \begin{definition}\label{is_closed_in} $A$ is closed in $X$ iff $\carrier[X]\setminus A$ is open in $X$. \end{definition} \begin{abbreviation}\label{is_clopen_in} $A$ is clopen in $X$ iff $A$ is open in $X$ and closed in $X$. \end{abbreviation} \begin{proposition}\label{emptyset_is_closed} Let $X$ be a topological space. Then $\emptyset$ is closed in $X$. \end{proposition} \begin{proof} $\carrier[X]\setminus \emptyset = \carrier[X]$. \end{proof} \begin{proposition}\label{carrier_is_closed} Let $X$ be a topological space. Then $\emptyset$ is closed in $X$. \end{proposition} \begin{proof} $\carrier[X]\setminus \carrier[X] = \emptyset$. \end{proof} \begin{definition}[Closed sets]\label{closeds} $\closeds{X} = \{ A\in\pow{\carrier[X]}\mid\text{$A$ is closed in $X$}\}$. \end{definition} \begin{proposition}\label{complement_of_open_elem_closeds} Let $X$ be a topological space. Let $U\in\opens[X]$. Then $\carrier[X]\setminus U\in\closeds{X}$. \end{proposition} \begin{proof} $\carrier[X]\setminus U\in\pow{\carrier[X]}$. $U\subseteq\carrier[X]$ by \cref{opens_type}. Hence $\carrier[X]\setminus(\carrier[X]\setminus U) = U$ by \cref{double_relative_complement}. $\carrier[X]\setminus U$ is closed in $X$. \end{proof} \begin{definition}[Closed covers]\label{closures} $\closures{A}{X} = \{ D\in\pow{\carrier[X]}\mid \text{$A\subseteq D$ and $D$ is closed in $X$}\}$. \end{definition} \begin{definition}[Closure]\label{closure} $\closure{A}{X} = \inters{\closures{A}{X}}$. \end{definition} \begin{proposition}\label{closure_emptyset} Let $X$ be a topological space. Then $\closure{\emptyset}{X} = \emptyset$. \end{proposition} \begin{proof} $\emptyset\in\closures{\emptyset}{X}$. \end{proof} \begin{proposition}\label{closure_carrier} Let $X$ be a topological space. Then $\closure{\carrier[X]}{X} = \carrier[X]$. \end{proposition} \begin{proof} %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X]\subseteq D$ by \cref{closures}. %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X]\supseteq D$ by \cref{pow_iff,closures}. %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X] = D$ by \cref{subseteq_antisymmetric}. For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X] = D$ by \cref{pow_iff,closures,subseteq_antisymmetric}. Now $\carrier[X]\in\closures{\carrier[X]}{X}$. Thus $\closures{\carrier[X]}{X} = \{\carrier[X]\}$ by \cref{singleton_iff_inhabited_subsingleton}. Follows by \cref{inters_singleton,closure}. \end{proof} \begin{proposition}%[Complement of interior equals closure of complement] \label{complement_interior_eq_closure_complement} $\carrier[X]\setminus\interior{A}{X} = \closure{(\carrier[X]\setminus A)}{X}$. \end{proposition} \begin{proof} Omitted. % Use general De Morgan's Law in Pow|X| \end{proof} \begin{definition}[Frontier]\label{frontier} $\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. \end{definition} \begin{proposition}%[Frontier as intersection of closures] \label{frontier_as_inter} $\frontier{A}{X} = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. \end{proposition} \begin{proof} % TODO Omitted. %$\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. % by frontier (definition) %$\closure{A}{X}\setminus\interior{A}{X} = \closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X})$. % by setminus_eq_inter_complement %$\closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X}) = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. % by complement_interior_eq_closure_complement \end{proof} \begin{proposition}\label{frontier_of_emptyset} Let $X$ be a topological space. Then $\frontier{\emptyset}{X} = \emptyset$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{frontier_of_carrier} Let $X$ be a topological space. Then $\frontier{\carrier[X]}{X} = \emptyset$. \end{proposition} \begin{proof} $\frontier{\carrier[X]}{X} = \carrier[X]\setminus\carrier[X]$ by \cref{frontier,interior_carrier,closure_carrier}. Follows by \cref{setminus_self}. \end{proof} \begin{definition}\label{neighbourhoods} $\neighbourhoods{x}{X} = \{U\in\opens[X] \mid x\in U\}$. \end{definition}