\import{topology/topological-space.tex} \import{topology/separation.tex} \import{topology/continuous.tex} \import{numbers.tex} \import{function.tex} \import{set.tex} \import{cardinal.tex} \section{Urysohns Lemma} % In this section we want to proof Urysohns lemma. % We try to follow the proof of Klaus Jänich in his book. TODO: Book reference % The Idea is to construct staircase functions as a chain. % The limit of our chain turns out to be our desired continuous function from a topological space $X$ to $[0,1]$. % With the property that \[f\mid_{A}=1 \land f\mid_{B}=0\] for \[A,B\] closed sets. %Chains of sets. The first tept will be a formalisation of chain constructions. \subsection{Chains of sets} % Assume $A,B$ are subsets of a topological space $X$. % As Jänich propose we want a special property on chains of subsets. % We need a rising chain of subsets $\mathfrak{A} = (A_{0}, ... ,A_{r})$ of $A$, i.e. % \begin{align} % A = A_{0} \subset A_{1} \subset ... \subset A_{r} \subset X\setminus B % \end{align} % such that for all elements in this chain following holds, % $\overline{A_{i-1}} \subset \interior{A_{i}}$. % In this case we call the chain legal. \begin{definition}\label{one_to_n_set} $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$. \end{definition} \begin{struct}\label{sequence} A sequence $X$ is a onesorted structure equipped with \begin{enumerate} \item $\index$ \item $\indexset$ \end{enumerate} such that \begin{enumerate} \item\label{indexset_is_subset_naturals} $\indexset[X] \subseteq \naturals$. \item\label{index_is_bijection} $\index[X]$ is a bijection from $\indexset[X]$ to $\carrier[X]$. \end{enumerate} \end{struct} \begin{definition}\label{cahin_of_subsets} $C$ is a chain of subsets iff $C$ is a sequence and for all $n,m \in \indexset[C]$ such that $n < m$ we have $\index[C](n) \subseteq \index[C](m)$. \end{definition} \begin{definition}\label{chain_of_n_subsets} $C$ is a chain of $n$ subsets iff $C$ is a chain of subsets and $n \in \indexset[C]$ and for all $m \in \naturals$ such that $m \leq n$ we have $m \in \indexset[C]$. \end{definition} % TODO: The Notion above should be generalised to sequences since we need them as well for our limit % and also for the subproof of continuity of the limit. % \begin{definition}\label{legal_chain} % $C$ is a legal chain of subsets of $X$ iff % $C \subseteq \pow{X}$. %and % %there exist $f \in \funs{C}{\naturals}$ such that % %for all $x,y \in C$ we have if $f(x) < f(y)$ then $x \subset y \land \closure{x} \subset \interior{y}$. % \end{definition} % TODO: We need a notion for declarinf new properties to existing thing. % % The following gives a example and a wish want would be nice to have: % "A (structure) is called (adjectiv of property), if" % % This should then be use als follows: % Let $X$ be a (adjectiv_1) ... (adjectiv_n) (structure_word). % Which should be translated to fol like this: % ?[X]: is_structure(X) & is_adjectiv_1(X) & ... & is_adjectiv_n(X) % --------------------------------------------------------------- \subsection{staircase function} \begin{definition}\label{intervalclosed} $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$. \end{definition} \begin{struct}\label{staircase_function} A staircase function $f$ is a onesorted structure equipped with \begin{enumerate} \item $\chain$ \end{enumerate} such that \begin{enumerate} \item \label{staircase_is_function} $f$ is a function to $\intervalclosed{\zero}{1}$. \item \label{staircase_domain} $\dom{f}$ is a topological space. \item \label{staricase_def_chain} $C$ is a chain of subsets. \item \label{staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$. \item \label{staircase_behavoir_index_zero} $f(\index[C](1))= 1$. \item \label{staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$. \end{enumerate} \end{struct} \begin{definition}\label{legal_staircase} $f$ is a legal staircase function iff $f$ is a staircase function and for all $n,m \in \indexset[\chain[f]]$ such that $n \leq m$ we have $f(\index[\chain[f]](n)) \leq f(\index[\chain[f]](m))$. \end{definition} \begin{abbreviation}\label{urysohnspace} $X$ is a urysohn space iff $X$ is a topological space and for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$ we have there exist $A',B' \in \opens[X]$ such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$. \end{abbreviation} \begin{definition}\label{urysohnchain} $C$ is a urysohnchain in $X$ of cardinality $k$ iff %<---- TODO: cardinality unused! $C$ is a chain of subsets and for all $A \in C$ we have $A \subseteq X$ and for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$. \end{definition} \begin{definition}\label{urysohnchain_without_cardinality} $C$ is a urysohnchain in $X$ iff $C$ is a chain of subsets and for all $A \in C$ we have $A \subseteq X$ and for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$. \end{definition} \begin{abbreviation}\label{infinte_sequence} $S$ is a infinite sequence iff $S$ is a sequence and $\indexset[S]$ is infinite. \end{abbreviation} \begin{definition}\label{infinite_product} $X$ is the infinite product of $Y$ iff $X$ is a infinite sequence and for all $i \in \indexset[X]$ we have $\index[X](i) = Y$. \end{definition} \begin{definition}\label{refinmant} $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and for all $y \in C$ such that $y \subset x$ we have there exist $c \in C'$ such that $y \subset c \subset x$ and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$. \end{definition} \begin{abbreviation}\label{two} $\two = \suc{1}$. \end{abbreviation} \begin{lemma}\label{two_in_reals} $\two \in \reals$. \end{lemma} \begin{lemma}\label{two_in_naturals} $\two \in \naturals$. \end{lemma} \begin{inductive}\label{power_of_two} Define $\powerOfTwoSet \subseteq (\naturals \times \naturals)$. \begin{enumerate} \item $(\zero, 1) \in \powerOfTwoSet$. \item If $(m,k) \in \powerOfTwoSet$, then $(m+1, k \rmul \two) \in \powerOfTwoSet$. \end{enumerate} \end{inductive} \begin{abbreviation}\label{pot} $\pot = \powerOfTwoSet$. \end{abbreviation} \begin{lemma}\label{dom_pot} $\dom{\pot} = \naturals$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{ran_pot} $\ran{\pot} \subseteq \naturals$. \end{lemma} \begin{proposition}\label{urysohnchain_induction_begin} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. Then there exist $U$ such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$ and $\indexset[U]= \{\zero, 1\}$ and $\index[U](\zero) = A$ and $\index[U](1) = (\carrier[X] \setminus B)$. %$U$ is a urysohnchain in $X$. \end{proposition} \begin{proof} Omitted. % We show that $U$ is a sequence. % \begin{subproof} % Omitted. % \end{subproof} % % We show that $A \subseteq (\carrier[X] \setminus B)$. % \begin{subproof} % Omitted. % \end{subproof} % % We show that $U$ is a chain of subsets. % \begin{subproof} % For all $n \in \indexset[U]$ we have $n = \zero \lor n = 1$. % It suffices to show that for all $n \in \indexset[U]$ we have % for all $m \in \indexset[U]$ such that % $n < m$ we have $\index[U](n) \subseteq \index[U](m)$. % Fix $n \in \indexset[U]$. % Fix $m \in \indexset[U]$. % \begin{byCase} % \caseOf{$n = 1$.} Trivial. % \caseOf{$n = \zero$.} % \begin{byCase} % \caseOf{$m = \zero$.} Trivial. % \caseOf{$m = 1$.} Omitted. % \end{byCase} % \end{byCase} % \end{subproof} % % $A \subseteq X$. % $(X \setminus B) \subseteq X$. % We show that for all $x \in U$ we have $x \subseteq X$. % \begin{subproof} % Omitted. % \end{subproof} % % We show that $\closure{A}{X} \subseteq \interior{(X \setminus B)}{X}$. % \begin{subproof} % Omitted. % \end{subproof} % We show that for all $n,m \in \indexset[U]$ such that $n < m$ we have % $\closure{\index[U](n)}{X} \subseteq \interior{\index[U](m)}{X}$. % \begin{subproof} % Omitted. % \end{subproof} \end{proof} \begin{proposition}\label{urysohnchain_induction_begin_step_two} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. Suppose there exist $U$ such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$ and $\indexset[U]= \{\zero, 1\}$ and $\index[U](\zero) = A$ and $\index[U](1) = (\carrier[X] \setminus B)$. Then $U$ is a urysohnchain in $X$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{t_four_propositon} Let $X$ be a urysohn space. Then for all $A,B \subseteq X$ such that $\closure{A}{X} \subseteq \interior{B}{X}$ we have there exists $C \subseteq X$ such that $\closure{A}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{B}{X}$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{definition}\label{minimum} $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$. \end{definition} \begin{definition}\label{maximum} $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$. \end{definition} \begin{proposition}\label{urysohnchain_induction_step_existence} Let $X$ be a urysohn space. Suppose $U$ is a urysohnchain in $X$. Then there exist $U'$ such that $U'$ is a refinmant of $U$ and $U'$ is a urysohnchain in $X$. \end{proposition} \begin{proof} % U = ( A_{0}, A_{1}, A_{2}, ... , A_{n-1}, A_{n}) % U' = ( A_{0}, A'_{1}, A_{1}, A'_{2}, A_{2}, ... A_{n-1}, A'_{n}, A_{n}) Let $m = \max{\indexset[U]}$. For all $n \in (\indexset[U] \setminus \{m\})$ we have there exist $C \subseteq X$ such that $\closure{\index[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\index[U](n+1)}{X}$. %\begin{definition}\label{refinmant} % $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and % for all $y \in C$ such that $y \subset x$ % we have there exist $c \in C'$ such that $y \subset c \subset x$ % and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$. %\end{definition} Omitted. \end{proof} \begin{proposition}\label{existence_of_staircase_function} Let $X$ be a urysohn space. Suppose $U$ is a urysohnchain in $X$ and $U$ has cardinality $k$. Suppose $k \neq \zero$. Then there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and for all $n \in \indexset[U]$ we have for all $x \in \index[U](n)$ we have $f(x) = \rfrac{n}{k}$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{abbreviation}\label{refinment_abbreviation} $x \refine y$ iff $x$ is a refinmant of $y$. \end{abbreviation} \begin{theorem}\label{urysohn} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous. \end{theorem} \begin{proof} There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$ and $\indexset[\eta] = \{\zero, 1\}$ and $\index[\eta](\zero) = A$ and $\index[\eta](1) = (\carrier[X] \setminus B)$ by \cref{urysohnchain_induction_begin}. We show that there exist $\zeta$ such that $\zeta$ is a sequence and $\indexset[\zeta] = \naturals$ and $\eta \in \carrier[\zeta]$ and $\index[\zeta](\eta) = \zero$ and for all $n \in \indexset[\zeta]$ we have $n+1 \in \indexset[\zeta]$ and $\index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)$. \begin{subproof} %Let $P = \{ n \in \naturals \mid \exists \zeta. ((n = \zero \land \index[\zeta](n) = \eta \land \index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)) \lor (n \neq \zero \land \index[\zeta](n)$ is a urysohnchain in $X$ \land $\index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)))\}$. %Let $C = \{ x \mid \text{$x$ is a uysohncahin in $X$}\}$. Let $\alpha = \{x \in C \mid \exists y \in \alpha. x \refine y \lor x = \eta\}$. Let $\beta = \{ (n,x) \mid n \in \naturals \mid \exists m \in \naturals. \exists y \in \alpha. (x \in \alpha) \land ((x \refine y \land m = n+1 )\lor ((n,x) = (\zero,\eta)))\}$. % TODO: Proof that \beta is a function which would be used for the indexing. \end{subproof} %Suppose $\eta$ is a urysohnchain in $X$. %Suppose $\carrier[\eta] =\{A, (X \setminus B)\}$ %and $\indexset[\eta] = \{\zero, 1\}$ %and $\index[\eta](\zero) = A$ %and $\index[\eta](1) = (X \setminus B)$. %Then $\eta$ is a urysohnchain in $X$. % Take $P$ such that $P$ is a infinite sequence and $\indexset[P] = \naturals$ and for all $i \in \indexset[P]$ we have $\index[P](i) = \pow{X}$. % % We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence % and for all $i \in \indexset[\zeta]$ we have % $\index[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$ % and $A \subseteq \index[\zeta](i)$ % and $\index[\zeta](i) \subseteq (X \setminus B)$ % and for all $j \in \indexset[\zeta]$ such that % $j < i$ we have for all $x \in \index[\zeta](j)$ we have $x \in \index[\zeta](i)$. % \begin{subproof} % Omitted. % \end{subproof} % % % % % % % % % We show that there exist $g \in \funs{X}{\intervalclosed{\zero}{1}}$ such that $g(A)=1$ and $g(X\setminus A) = \zero$. % \begin{subproof} % Omitted. % \end{subproof} % $g$ is a staircase function and $\chain[g] = C$. % $g$ is a legal staircase function. % % % We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$ % and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous. % \begin{subproof} % Omitted. % \end{subproof} % We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$. % \begin{subproof} % Omitted. % \end{subproof} % Proof Sheme Idea: % -We proof for n=1 that C_{n} is a chain and legal % -Then by induction with P(n+1) is refinmant of P(n) % -Therefore we have a increing refinmant of these Chains such that our limit could even apply % --------------------------------------------------------- % We show that there exist $f \in \funs{\naturals}{\funs{X}{\intervalclosed{0}{1}}}$ such that $f(n)$ is a staircase function. %TODO: Define Staircase function % \begin{subproof} % Omitted. % \end{subproof} % Formalization idea of enumarted sequences: % - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals} % - This should give all finite and infinte enumarable sequences % - Introduce a notion for the indexing of these enumarable sequences. % - Then we can define the limit of a enumarted sequence of functions. % --------------------------------------------------------- % % Here we need a limit definition for sequences of functions % We show that there exist $F \in \funs{X}{\intervalclosed{0}{1}}$ such that $F = \limit{set of the staircase functions}$ % \begin{subproof} % Omitted. % \end{subproof} % % We show that $F(A) = 1$. % \begin{subproof} % Omitted. % \end{subproof} % % We show that $F(B) = 0$. % \begin{subproof} % Omitted. % \end{subproof} % % We show that $F$ is continuous. % \begin{subproof} % Omitted. % \end{subproof} \end{proof} %\begin{theorem}\label{safe} % Contradiction. %\end{theorem}