\import{topology/topological-space.tex} \import{topology/separation.tex} \import{topology/continuous.tex} \import{topology/basis.tex} \import{numbers.tex} \import{function.tex} \import{set.tex} \import{cardinal.tex} \import{relation.tex} \import{relation/uniqueness.tex} \import{set/cons.tex} \import{set/powerset.tex} \import{set/fixpoint.tex} \import{set/product.tex} \import{topology/real-topological-space.tex} \section{Urysohns Lemma} \begin{definition}\label{sequence} $X$ is a sequence iff $X$ is a function and $\dom{X} \subseteq \naturals$. \end{definition} \begin{abbreviation}\label{urysohnspace} $X$ is a urysohn space iff $X$ is a topological space and for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$ we have there exist $A',B' \in \opens[X]$ such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$. \end{abbreviation} \begin{abbreviation}\label{at} $\at{f}{n} = f(n)$. \end{abbreviation} \begin{definition}\label{chain_of_subsets} $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$ and for all $m \in \dom{X}$ such that $m > n$ we have $\at{X}{n} \subseteq \at{X}{m}$. \end{definition} \begin{definition}\label{urysohnchain}%<-- zulässig $X$ is a urysohnchain of $Y$ iff $X$ is a chain of subsets in $Y$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $\closure{\at{X}{n}}{Y} \subseteq \interior{\at{X}{m}}{Y}$. \end{definition} \begin{definition}\label{urysohn_finer_set} $A$ is finer between $X$ to $Y$ in $U$ iff $\closure{X}{U} \subseteq \interior{A}{U}$ and $\closure{A}{U} \subseteq \interior{Y}{U}$. \end{definition} \begin{definition}\label{finer} %<-- verfeinerung $Y$ is finer then $X$ in $U$ iff for all $n \in \dom{X}$ we have $\at{X}{n} \in \ran{Y}$ and for all $m \in \dom{X}$ such that $n < m$ we have there exist $k \in \dom{Y}$ such that $\at{Y}{k}$ is finer between $\at{X}{n}$ to $\at{X}{m}$ in $U$. \end{definition} \begin{definition}\label{follower_index} $y$ follows $x$ in $I$ iff $x < y$ and $x,y \in I$ and for all $i \in I$ such that $x < i$ we have $y \leq i$. \end{definition} \begin{definition}\label{finer_smallest_step} $Y$ is a minimal finer extention of $X$ in $U$ iff $Y$ is finer then $X$ in $U$ and for all $x_1,x_2 \in \dom{X}$ such that $x_1$ follows $x_2$ in $\dom{X}$ we have there exist $y \in \dom{Y}$ such that $y$ follows $x_1$ in $\dom{X}$ and $x_2$ follows $y$ in $\dom{X}$. \end{definition} \begin{definition}\label{sequence_of_reals} $X$ is a sequence of reals iff $\ran{X} \subseteq \reals$. \end{definition} \begin{definition}\label{pointwise_convergence} $X$ converge to $x$ iff for all $\epsilon \in \realsplus$ there exist $N \in \dom{X}$ such that for all $n \in \dom{X}$ such that $n > N$ we have $\at{X}{n} \in \epsBall{x}{\epsilon}$. \end{definition} \begin{proposition}\label{iff_sequence} Suppose $X$ is a function. Suppose $\dom{X} \subseteq \naturals$. Then $X$ is a sequence. \end{proposition} \begin{definition}\label{lifted_urysohn_chain} $U$ is a lifted urysohnchain of $X$ iff $U$ is a sequence and $\dom{U} = \naturals$ and for all $n \in \dom{U}$ we have $\at{U}{n}$ is a urysohnchain of $X$ and $\at{U}{\suc{n}}$ is a minimal finer extention of $\at{U}{n}$ in $X$. \end{definition} \begin{definition}\label{normal_ordered_urysohnchain} $U$ is normal ordered iff there exist $n \in \naturals$ such that $\dom{U} = \seq{\zero}{n}$. \end{definition} \begin{definition}\label{bijection_of_urysohnchains} $f$ is consistent on $X$ to $Y$ iff $f$ is a bijection from $\dom{X}$ to $\dom{Y}$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $f(n) < f(m)$. \end{definition} \begin{proposition}\label{naturals_in_transitive} $\naturals$ is a \in-transitive set. \end{proposition} \begin{proposition}\label{naturals_elem_in_transitive} If $n \in \naturals$ then $n$ is \in-transitive and every element of $n$ is \in-transitive. %If $n$ is a natural number then $n$ is \in-transitive and every element of $n$ is \in-transitive. \end{proposition} \begin{proposition}\label{natural_number_is_ordinal_for_all} For all $n \in \naturals$ we have $n$ is a ordinal. \end{proposition} \begin{proposition}\label{zero_is_in_minimal} $\zero$ is an \in-minimal element of $\naturals$. \end{proposition} \begin{proposition}\label{natural_rless_eq_precedes} For all $n,m \in \naturals$ we have $n \precedes m$ iff $n \in m$. \end{proposition} \begin{proposition}\label{naturals_precedes_suc} For all $n \in \naturals$ we have $n \precedes \suc{n}$. \end{proposition} \begin{proposition}\label{zero_is_empty} There exists no $x$ such that $x \in \zero$. \end{proposition} \begin{proposition}\label{one_is_positiv} $1$ is positiv. \end{proposition} \begin{proposition}\label{suc_of_positive_is_positive} For all $n \in \naturals$ such that $n$ is positiv we have $\suc{n}$ is positiv. \end{proposition} \begin{proposition}\label{naturals_are_positiv_besides_zero} For all $n \in \naturals$ such that $n \neq \zero$ we have $n$ is positiv. \end{proposition} \begin{proof}[Proof by \in-induction on $n$] Assume $n \in \naturals$. \begin{byCase} \caseOf{$n = \zero$.} Trivial. \caseOf{$n \neq \zero$.} Take $k \in \naturals$ such that $\suc{k} = n$. \end{byCase} \end{proof} \begin{proposition}\label{naturals_sum_eq_zero} For all $n,m \in \naturals$ we have if $n+m = \zero$ then $n = m = \zero$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{no_natural_between_n_and_suc_n} For all $n,m \in \naturals$ we have not $n < m < \suc{n}$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{naturals_is_zero_one_or_greater} $\naturals = \{n \in \naturals \mid n > 1 \lor n = 1 \lor n = \zero\}$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{naturals_rless_existence_of_lesser_natural} For all $n \in \naturals$ we have for all $m \in \naturals$ such that $m < n$ there exist $k \in \naturals$ such that $m + k = n$. \end{proposition} \begin{proof}[Proof by \in-induction on $n$] Assume $n \in \naturals$. \begin{byCase} \caseOf{$n = \zero$.} We show that for all $m \in \naturals$ such that $m < n$ we have there exist $k \in \naturals$ such that $m + k = n$. \begin{subproof}[Proof by \in-induction on $m$] Assume $m \in \naturals$. \begin{byCase} \caseOf{$m = \zero$.} Trivial. \caseOf{$m \neq \zero$.} Trivial. \end{byCase} \end{subproof} \caseOf{$n = 1$.} Fix $m$. For all $l \in \naturals$ we have If $l < 1$ then $l = \zero$. Then $\zero + 1 = 1$. \caseOf{$n > 1$.} Take $l \in \naturals$ such that $\suc{l} = n$. Omitted. \end{byCase} \end{proof} \begin{proposition}\label{rless_eq_in_for_naturals} For all $n,m \in \naturals$ such that $n < m$ we have $n \in m$. \end{proposition} \begin{proof} We show that for all $n \in \naturals$ we have for all $m \in \naturals$ such that $m < n$ we have $m \in n$. \begin{subproof}[Proof by \in-induction on $n$] Assume $n \in \naturals$. We show that for all $m \in \naturals$ such that$m < n$ we have $m \in n$. \begin{subproof}[Proof by \in-induction on $m$] Assume $m \in \naturals$. \begin{byCase} \caseOf{$\suc{m}=n$.} \caseOf{$\suc{m}\neq n$.} \begin{byCase} \caseOf{$n = \zero$.} \caseOf{$n \neq \zero$.} Take $l \in \naturals$ such that $\suc{l} = n$. Omitted. \end{byCase} \end{byCase} \end{subproof} \end{subproof} %Fix $n \in \naturals$. %\begin{byCase} % \caseOf{$n = \zero$.} % For all $k \in \naturals$ we have $k = \zero$ or $\zero < k$. % % \caseOf{$n \neq \zero$.} % Fix $m \in \naturals$. % It suffices to show that $m \in n$. %\end{byCase} \end{proof} \begin{proposition}\label{naturals_leq} For all $n \in \naturals$ we have $\zero \leq n$. \end{proposition} \begin{proposition}\label{naturals_leq_on_suc} For all $n,m \in \naturals$ such that $m < \suc{n}$ we have $m \leq n$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{x_in_seq_iff} Suppose $n,m,x \in \naturals$. $x \in \seq{n}{m}$ iff $n \leq x \leq m$. \end{proposition} \begin{proposition}\label{seq_zero_to_n_eq_to_suc_n} For all $n \in \naturals$ we have $\seq{\zero}{n} = \suc{n}$. \end{proposition} \begin{proof} [Proof by \in-induction on $n$] Assume $n \in \naturals$. $n \in \naturals$. For all $m \in n$ we have $m \in \naturals$. \begin{byCase} \caseOf{$n = \zero$.} It suffices to show that $1 = \seq{\zero}{\zero}$. Follows by set extensionality. \caseOf{$n \neq \zero$.} Take $k$ such that $k \in \naturals$ and $\suc{k} = n$. Then $k \in n$. Therefore $\seq{\zero}{k} = \suc{k}$. We show that $\seq{\zero}{n} = \seq{\zero}{k} \union \{n\}$. \begin{subproof} We show that $\seq{\zero}{n} \subseteq \seq{\zero}{k} \union \{n\}$. \begin{subproof} It suffices to show that for all $x \in \seq{\zero}{n}$ we have $x \in \seq{\zero}{k} \union \{n\}$. $n \in \naturals$. $\zero \leq n$. $n \leq n$. We have $n \in \seq{\zero}{n}$. Therefore $\seq{\zero}{n}$ is inhabited. Take $x$ such that $x \in \seq{\zero}{n}$. Therefore $\zero \leq x \leq n$. $x = n$ or $x < n$. Then either $x = n$ or $x \leq k$. Therefore $x \in \seq{\zero}{k}$ or $x = n$. Follows by \cref{reals_order,natural_number_is_ordinal,ordinal_empty_or_emptyset_elem,naturals_leq_on_suc,reals_axiom_zero_in_reals,naturals_subseteq_reals,subseteq,union_intro_left,naturals_inductive_set,m_to_n_set,x_in_seq_iff,union_intro_right,singleton_intro}. \end{subproof} We show that $\seq{\zero}{k} \union \{n\} \subseteq \seq{\zero}{n}$. \begin{subproof} It suffices to show that for all $x \in \seq{\zero}{k} \union \{n\}$ we have $x \in \seq{\zero}{n}$. $k \leq n$ by \cref{naturals_subseteq_reals,suc_eq_plus_one,plus_one_order,subseteq}. $k \in n$. $\seq{\zero}{k} = \suc{k}$ by assumption. $n \in \naturals$. $\zero \leq n$. $n \leq n$. We have $n \in \seq{\zero}{n}$. Therefore $\seq{\zero}{n}$ is inhabited. Take $x$ such that $x \in \seq{\zero}{n}$. Therefore $\zero \leq x \leq n$. $x = n$ or $x < n$. Then either $x = n$ or $x \leq k$. Therefore $x \in \seq{\zero}{k}$ or $x = n$. Fix $x$. \begin{byCase} \caseOf{$x \in \seq{\zero}{k}$.} Trivial. \caseOf{$x = n$.} It suffices to show that $n \in \seq{\zero}{n}$. \end{byCase} \end{subproof} Trivial. \end{subproof} We have $\suc{n} = n \union \{n\}$. \end{byCase} %Assume $n$ is a natural number. %We show that $\seq{\zero}{\zero}$ has cardinality $1$. %\begin{subproof} % It suffices to show that $1 = \seq{\zero}{\zero}$. % Follows by set extensionality. %\end{subproof} %It suffices to show that if $n \neq \zero$ then $\seq{\zero}{n}$ has cardinality $\suc{n}$. %We show that for all $m \in \naturals$ such that $m \neq \zero$ we have $\seq{\zero}{m}$ has cardinality $\suc{m}$. %\begin{subproof} % Fix $m \in \naturals$. % Take $k$ such that $k \in \naturals$ and $\suc{k} = m$. % Then $k \in m$. %\end{subproof} %For all $n \in \naturals$ we have either $n = \zero$ or there exist $m \in \naturals$ such that $n = \suc{m}$. %For all $n \in \naturals$ we have either $n = \zero$ or $\zero \in n$. %We show that if $\seq{\zero}{n}$ has cardinality $\suc{n}$ then $\seq{\zero}{\suc{n}}$ has cardinality $\suc{\suc{n}}$. %\begin{subproof} % Omitted. %\end{subproof} \end{proof} \begin{proposition}\label{seq_zero_to_n_isomorph_to_suc_n} For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$. \end{proposition} \begin{proposition}\label{bijection_naturals_order} For all $M \subseteq \naturals$ such that $M$ is inhabited we have there exist $f,k$ such that $f$ is a bijection from $\seq{\zero}{k}$ to $M$ and $M$ has cardinality $\suc{k}$ and for all $n,m \in \seq{\zero}{k}$ such that $n < m$ we have $f(n) < f(m)$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{existence_normal_ordered_urysohn} Let $X$ be a urysohn space. Suppose $U$ is a urysohnchain of $X$. Suppose $\dom{U}$ is finite. Suppose $U$ is inhabited. Then there exist $V,f$ such that $V$ is a urysohnchain of $X$ and $f$ is consistent on $U$ to $V$ and $V$ is normal ordered. \end{proposition} \begin{proof} Take $n$ such that $\dom{U}$ has cardinality $n$ by \cref{ran_converse,cardinality,finite}. \begin{byCase} \caseOf{$n = \zero$.} Omitted. \caseOf{$n \neq \zero$.} Take $k$ such that $k \in \naturals$ and $\suc{k}=n$. We have $\dom{U} \subseteq \naturals$. $\dom{U}$ is inhabited. We show that there exist $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$ and for all $n',m' \in \seq{\zero}{k}$ such that $n' < m'$ we have $F(n') < F(m')$. \begin{subproof} Omitted. \end{subproof} Let $N = \seq{\zero}{k}$. Let $M = \pow{X}$. Define $V : N \to M$ such that $V(n)= \begin{cases} \at{U}{F(n)} & \text{if} n \in N \end{cases}$ $\dom{V} = \seq{\zero}{k}$. We show that $V$ is a urysohnchain of $X$. \begin{subproof} Trivial. \end{subproof} We show that $F$ is consistent on $U$ to $V$. \begin{subproof} Trivial. \end{subproof} $V$ is normal ordered. \end{byCase} \end{proof} \begin{definition}\label{staircase} $f$ is a staircase function adapted to $U$ in $X$ iff $U$ is a urysohnchain of $X$ and for all $x,n,m,k$ such that $k = \max{\dom{U}}$ and $n,m \in \dom{U}$ and $n$ follows $m$ in $\dom{U}$ and $x \in (\at{U}{m} \setminus \at{U}{n})$ we have $f(x)= \rfrac{m}{k}$. \end{definition} \begin{definition}\label{staircase_sequence} $f$ is staircase sequence of $U$ iff $f$ is a sequence and $U$ is a lifted urysohnchain of $X$ and $\dom{U} = \dom{f}$ and for all $n \in \dom{U}$ we have $\at{f}{n}$ is a staircase function adapted to $\at{U}{n}$ in $U$. \end{definition} \begin{theorem}\label{urysohnsetinbeetween} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $\closure{A}{X} \subseteq \interior{B}{X}$. Suppose $\carrier[X]$ is inhabited. There exist $U \subseteq \carrier[X]$ such that $U$ is closed in $X$ and $\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{B}{X}$. \end{theorem} \begin{proof} Omitted. \end{proof} \begin{theorem}\label{induction_on_urysohnchains} Let $X$ be a urysohn space. Suppose $U_0$ is a sequence. Suppose $U_0$ is a chain of subsets in $X$. Suppose $U_0$ is a urysohnchain of $X$. There exist $U$ such that $U$ is a sequence and $\dom{U} = \naturals$ and $\at{U}{\zero} = U_0$ and for all $n \in \dom{U}$ we have $\at{U}{n}$ is a urysohnchain of $X$ and $\at{U}{\suc{n}}$ is a minimal finer extention of $\at{U}{n}$ in $X$. \end{theorem} \begin{proof} %$U_0$ is a urysohnchain of $X$. %It suffices to show that for all $V$ such that $V$ is a urysohnchain of $X$ there exist $V'$ such that $V'$ is a urysohnchain of $X$ and $V'$ is a minimal finer extention of $V$ in $X$. Omitted. \end{proof} \begin{theorem}\label{urysohn} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. Suppose $\carrier[X]$ is inhabited. There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous. \end{theorem} \begin{proof} Let $X' = \carrier[X]$. Let $N = \{\zero, 1\}$. $1 = \suc{\zero}$. $1 \in \naturals$ and $\zero \in \naturals$. $N \subseteq \naturals$. Let $A' = (X' \setminus B)$. $B \subseteq X'$ by \cref{powerset_elim,closeds}. $A \subseteq X'$. Therefore $A \subseteq A'$. Define $U_0: N \to \{A, A'\}$ such that $U_0(n) = \begin{cases} A &\text{if} n = \zero \\ A' &\text{if} n = 1 \end{cases}$ $U_0$ is a function. $\dom{U_0} = N$. $\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}. $U_0$ is a sequence. We have $1, \zero \in N$. We show that $U_0$ is a chain of subsets in $X$. \begin{subproof} We have $\dom{U_0} \subseteq \naturals$. We have for all $n \in \dom{U_0}$ we have $\at{U_0}{n} \subseteq \carrier[X]$ by \cref{topological_prebasis_iff_covering_family,union_as_unions,union_absorb_subseteq_left,subset_transitive,setminus_subseteq}. We have $\dom{U_0} = \{\zero, 1\}$. It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $m > n$ we have $\at{U_0}{n} \subseteq \at{U_0}{m}$. Fix $n \in \dom{U_0}$. Fix $m \in \dom{U_0}$. \begin{byCase} \caseOf{$n \neq \zero$.} Trivial. \caseOf{$n = \zero$.} \begin{byCase} \caseOf{$m = \zero$.} Trivial. \caseOf{$m \neq \zero$.} We have $A \subseteq A'$. We have $\at{U_0}{\zero} = A$ by assumption. We have $\at{U_0}{1}= A'$ by assumption. Follows by \cref{powerset_elim,emptyset_subseteq,union_as_unions,union_absorb_subseteq_left,subseteq_pow_unions,ran_converse,subseteq,subseteq_antisymmetric,suc_subseteq_intro,apply,powerset_emptyset,emptyset_is_ordinal,notin_emptyset,ordinal_elem_connex,omega_is_an_ordinal,prec_is_ordinal}. \end{byCase} \end{byCase} \end{subproof} We show that $U_0$ is a urysohnchain of $X$. \begin{subproof} It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $n < m$ we have $\closure{\at{U_0}{n}}{X} \subseteq \interior{\at{U_0}{m}}{X}$. Fix $n \in \dom{U_0}$. Fix $m \in \dom{U_0}$. \begin{byCase} \caseOf{$n \neq \zero$.} Follows by \cref{ran_converse,upair_iff,one_in_reals,order_reals_lemma0,reals_axiom_zero_in_reals,reals_one_bigger_zero,reals_order}. \caseOf{$n = \zero$.} \begin{byCase} \caseOf{$m = \zero$.} Trivial. \caseOf{$m \neq \zero$.} Follows by \cref{setminus_emptyset,setdifference_eq_intersection_with_complement,setminus_self,interior_carrier,complement_interior_eq_closure_complement,subseteq_refl,closure_interior_frontier_is_in_carrier,emptyset_subseteq,closure_is_minimal_closed_set,inter_lower_right,inter_lower_left,subseteq_transitive,interior_of_open,is_closed_in,closeds,union_absorb_subseteq_right,ordinal_suc_subseteq,ordinal_empty_or_emptyset_elem,union_absorb_subseteq_left,union_emptyset,topological_prebasis_iff_covering_family,inhabited,notin_emptyset,subseteq,union_as_unions,natural_number_is_ordinal}. \end{byCase} \end{byCase} \end{subproof} %We are done with the first step, now we want to prove that we have U a sequence of these chain with U_0 the first chain. We show that there exist $U$ such that $U$ is a sequence and $\dom{U} = \naturals$ and $\at{U}{\zero} = U_0$ and for all $n \in \dom{U}$ we have $\at{U}{n}$ is a urysohnchain of $X$ and $\at{U}{\suc{n}}$ is a minimal finer extention of $\at{U}{n}$ in $X$. \begin{subproof} Follows by \cref{chain_of_subsets,urysohnchain,induction_on_urysohnchains}. \end{subproof} Take $U$ such that $U$ is a lifted urysohnchain of $X$ and $\at{U}{\zero} = U_0$. \end{proof} \begin{theorem}\label{safe} Contradiction. \end{theorem} % %Ideen: %Eine folge ist ein Funktion mit domain \subseteq Natürlichenzahlen. als predicat % %zulässig und verfeinerung von ketten als predicat definieren. % %limits und punkt konvergenz als prädikat. % % %Vor dem Beweis vor dem eigentlichen Beweis. %die abgeleiteten Funktionen % %\derivedstiarcasefunction on A % %abbreviation: \at{f}{n} = f_{n} % % %TODO: %Reals ist ein topologischer Raum %