\import{topology/topological-space.tex} \import{topology/separation.tex} \import{topology/continuous.tex} \import{topology/basis.tex} \import{numbers.tex} \import{function.tex} \import{set.tex} \import{cardinal.tex} \import{relation.tex} \import{relation/uniqueness.tex} \import{set/cons.tex} \import{set/powerset.tex} \import{set/fixpoint.tex} \import{set/product.tex} \section{Urysohns Lemma} \begin{definition}\label{minimum} $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$. \end{definition} \begin{definition}\label{maximum} $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$. \end{definition} \begin{definition}\label{intervalclosed} $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$. \end{definition} \begin{definition}\label{intervalopen} $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$. \end{definition} \begin{definition}\label{one_to_n_set} $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$. \end{definition} \begin{definition}\label{sequence} $X$ is a sequence iff $X$ is a function and $\dom{f} \subseteq \naturals$. \end{definition} \begin{abbreviation}\label{urysohnspace} $X$ is a urysohn space iff $X$ is a topological space and for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$ we have there exist $A',B' \in \opens[X]$ such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$. \end{abbreviation} \begin{abbreviation}\label{at} $\at{f}{n} = f(n)$. \end{abbreviation} \begin{definition}\label{chain_of_subsets} $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$. \end{definition} \begin{definition}\label{urysohnchain}%<-- zulässig $X$ is a urysohnchain of $Y$ iff $X$ is a chain of subsets in $Y$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $\closure{\at{X}{n}}{Y} \subseteq \interior{\at{X}{m}}{Y}$. \end{definition} \begin{definition}\label{finer} %<-- verfeinerung $X$ is finer then $Y$ in $U$ iff for all $n \in \dom{X}$ we have $\at{X}{n} \in \ran{Y}$ and for all $m \in \dom{X}$ such that $n < m$ we have there exist $k \in \dom{Y}$ such that $ \closure{\at{X}{n}}{U} \subseteq \interior{\at{Y}{k}}{U} \subseteq \closure{\at{Y}{k}}{U} \subseteq \interior{\at{X}{m}}{U}$. \end{definition} \begin{definition}\label{sequence_of_reals} $X$ is a sequence of reals iff $\ran{X} \subseteq \reals$. \end{definition} \begin{axiom}\label{abs_behavior1} If $x \geq \zero$ then $\abs{x} = x$. \end{axiom} \begin{axiom}\label{abs_behavior2} If $x < \zero$ then $\abs{x} = \neg{x}$. \end{axiom} \begin{definition}\label{realsminus} $\realsminus = \{r \in \reals \mid r < \zero\}$. \end{definition} \begin{definition}\label{realsplus} $\realsplus = \reals \setminus \realsminus$. \end{definition} \begin{definition}\label{epsilon_ball} $\epsBall{x}{\epsilon} = \intervalopen{x-\epsilon}{x+\epsilon}$. \end{definition} \begin{definition}\label{pointwise_convergence} $X$ converge to $x$ iff for all $\epsilon \in \realsplus$ there exist $N \in \dom{X}$ such that for all $n \in \dom{X}$ such that $n > N$ we have $\at{X}{n} \in \epsBall{x}{\epsilon}$. \end{definition} \begin{theorem}\label{urysohnsetinbeetween} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $\closure{A}{X} \subseteq \interior{B}{X}$. Suppose $\carrier[X]$ is inhabited. There exist $U \subseteq \carrier[X]$ such that $U$ is closed in $X$ and $\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{B}{X}$. \end{theorem} \begin{theorem}\label{urysohn} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. Suppose $\carrier[X]$ is inhabited. There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous. \end{theorem} \begin{proof} Let $H = \carrier[X] \setminus B$. Let $P = \{x \in \pow{X} \mid x = A \lor x = H \lor (x \in \pow{X} \land (\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{H}{X}))\}$. Let $\eta = \carrier[X]$. % Provable % vvv Define $F : \eta \to \reals$ such that $F(x) =$ \begin{cases} & \zero &\text{if} x \in A\\ & \rfrac{1}{1+1} &\text{if} x \in (\carrier[X] \setminus (A \union B))\\ & 1 &\text{if} x \in B \end{cases} %Define $f : \naturals \to \pow{P}$ such that $f(x)=$ %\begin{cases} % & \emptyset & \text{if} x = \zero \\ % & \{A, H\} & \text{if} x = 1 \\ % & G & \text{if} x \in (\naturals \setminus \{1, \zero\}) \land G = \{g \in \pow{P} \mid g \in f(n-1) \lor (g \notin f(n-1) \land g \in P) \} %\end{cases} %Let $D = \{d \mid d \in \rationals \mid \zero \leq d \leq 1\}$. %Take $R$ such that for all $q \in D$ we have for all $S \in P$ we have $q \mathrel{R} S$ iff % $q = \zero \land S = A$ or $q = 1 \land S = H$ or % for all $q_1, q_2, S_1, S_2$ % such that $q_1 \leq q \leq q_2$ and $q_1 \mathrel{R} S_1$ and $q_2 \mathrel{R} S_2$ % we have $\closure{S_1}{X} \subseteq \interior{S}{X} \subseteq \closure{S}{X} \subseteq \interior{S_2}{X}$ % and $q \mathrel{R} S$. %Let $J = \{(n,f) \mid n denots the cardinality of a urysohn chain on which f is a staircase function\}$. % %Let $N = \naturals$. %Define $j : N \to \funs{\carrier[X]}{\eals}$ such that $j(n) =$ %\begin{cases} % & f &\text{if} n \in N \land \exist w \in J. J=(n,f) %\end{cases} \end{proof} \begin{theorem}\label{safe} Contradiction. \end{theorem} % %Ideen: %Eine folge ist ein Funktion mit domain \subseteq Natürlichenzahlen. als predicat % %zulässig und verfeinerung von ketten als predicat definieren. % %limits und punkt konvergenz als prädikat. % % %Vor dem Beweis vor dem eigentlichen Beweis. %die abgeleiteten Funktionen % %\derivedstiarcasefunction on A % %abbreviation: \at{f}{n} = f_{n} % % %TODO: %Reals ist ein topologischer Raum %