\import{topology/topological-space.tex} \import{topology/separation.tex} \import{topology/continuous.tex} \import{topology/basis.tex} \import{numbers.tex} \import{function.tex} \import{set.tex} \import{cardinal.tex} \import{relation.tex} \import{relation/uniqueness.tex} \import{set/cons.tex} \import{set/powerset.tex} \import{set/fixpoint.tex} \import{set/product.tex} \section{Urysohns Lemma} \begin{abbreviation}\label{urysohnspace} $X$ is a urysohn space iff $X$ is a topological space and for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$ we have there exist $A',B' \in \opens[X]$ such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$. \end{abbreviation} \begin{definition}\label{intervalclosed} $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$. \end{definition} \begin{theorem}\label{urysohn} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. Suppose $\carrier[X]$ is inhabited. There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous. \end{theorem} \begin{proof} Define $f : X \to \reals$ such that $f(x) = $ \begin{cases} &(x + k) &\text{if} x \in X \land k \in \naturals & x &\text{if} x \neq \zero & \zero & \text{if} x = \zero % & x ,x \in X <- will result in technicly ambigus parse \end{cases} Trivial. \end{proof} \begin{theorem}\label{safe} Contradiction. \end{theorem}