\import{topology/topological-space.tex} \import{topology/separation.tex} \import{topology/continuous.tex} \import{topology/basis.tex} \import{numbers.tex} \import{function.tex} \import{set.tex} \import{cardinal.tex} \import{relation.tex} \import{relation/uniqueness.tex} \import{set/cons.tex} \import{set/powerset.tex} \import{set/fixpoint.tex} \import{set/product.tex} \section{Urysohns Lemma} \begin{definition}\label{one_to_n_set} $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$. \end{definition} \begin{struct}\label{sequence} A sequence $X$ is a onesorted structure equipped with \begin{enumerate} \item $\index$ \item $\indexset$ \end{enumerate} such that \begin{enumerate} \item\label{indexset_is_subset_naturals} $\indexset[X] \subseteq \naturals$. \item\label{index_is_bijection} $\index[X]$ is a bijection from $\indexset[X]$ to $\carrier[X]$. \end{enumerate} \end{struct} \begin{abbreviation}\label{urysohnspace} $X$ is a urysohn space iff $X$ is a topological space and for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$ we have there exist $A',B' \in \opens[X]$ such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$. \end{abbreviation} \begin{definition}\label{intervalclosed} $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$. \end{definition} \begin{theorem}\label{urysohnsetinbeetween} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $\closure{A}{X} \subseteq \interior{B}{X}$. Suppose $\carrier[X]$ is inhabited. There exist $U \subseteq \carrier[X]$ such that $U$ is closed in $X$ and $\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{B}{X}$. \end{theorem} \begin{theorem}\label{urysohn} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. Suppose $\carrier[X]$ is inhabited. There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous. \end{theorem} \begin{proof} Let $H = \carrier[X] \setminus B$. Let $P = \{x \in \pow{X} \mid x = A \lor x = H \lor (x \in \pow{X} \land (\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{H}{X}))\}$. Let $\eta = \carrier[X]$. % Provable % vvv Define $F : \eta \to \reals$ such that $F(x) =$ \begin{cases} & \zero &\text{if} x \in A\\ & \rfrac{1}{1+1} &\text{if} x \in (\carrier[X] \setminus (A \union B))\\ & 1 &\text{if} x \in B \end{cases} %Define $f : \naturals \to \pow{P}$ such that $f(x)=$ %\begin{cases} % & \emptyset & \text{if} x = \zero \\ % & \{A, H\} & \text{if} x = 1 \\ % & G & \text{if} x \in (\naturals \setminus \{1, \zero\}) \land G = \{g \in \pow{P} \mid g \in f(n-1) \lor (g \notin f(n-1) \land g \in P) \} %\end{cases} Let $D = \{d \mid d \in \rationals \mid \zero \leq d \leq 1\}$. Take $R$ such that for all $q \in D$ we have for all $S \in P$ we have $q \mathrel{R} S$ iff $q = \zero \land S = A$ or $q = 1 \land S = H$ or for all $q_1, q_2, S_1, S_2$ such that $q_1 \leq q \leq q_2$ and $q_1 \mathrel{R} S_1$ and $q_2 \mathrel{R} S_2$ we have $\closure{S_1}{X} \subseteq \interior{S}{X} \subseteq \closure{S}{X} \subseteq \interior{S_2}{X}$ and $q \mathrel{R} S$. Trivial. \end{proof} \begin{theorem}\label{safe} Contradiction. \end{theorem}