\import{topology/topological-space.tex} \import{topology/separation.tex} \import{topology/continuous.tex} \import{topology/basis.tex} \import{numbers.tex} \import{function.tex} \import{set.tex} \import{cardinal.tex} \import{relation.tex} \import{relation/uniqueness.tex} \import{set/cons.tex} \import{set/powerset.tex} \import{set/fixpoint.tex} \import{set/product.tex} \section{Urysohns Lemma} \begin{definition}\label{minimum} $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$. \end{definition} \begin{definition}\label{maximum} $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$. \end{definition} \begin{definition}\label{intervalclosed} $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$. \end{definition} \begin{definition}\label{intervalopen} $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$. \end{definition} \begin{definition}\label{one_to_n_set} $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$. \end{definition} \begin{definition}\label{sequence} $X$ is a sequence iff $X$ is a function and $\dom{X} \subseteq \naturals$. \end{definition} \begin{abbreviation}\label{urysohnspace} $X$ is a urysohn space iff $X$ is a topological space and for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$ we have there exist $A',B' \in \opens[X]$ such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$. \end{abbreviation} \begin{abbreviation}\label{at} $\at{f}{n} = f(n)$. \end{abbreviation} \begin{definition}\label{chain_of_subsets} $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$ and for all $m \in \dom{X}$ such that $m > n$ we have $\at{X}{n} \subseteq \at{X}{m}$. \end{definition} \begin{definition}\label{urysohnchain}%<-- zulässig $X$ is a urysohnchain of $Y$ iff $X$ is a chain of subsets in $Y$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $\closure{\at{X}{n}}{Y} \subseteq \interior{\at{X}{m}}{Y}$. \end{definition} \begin{definition}\label{urysohn_finer_set} $A$ is finer between $X$ to $Y$ in $U$ iff $\closure{X}{U} \subseteq \interior{A}{U}$ and $\closure{A}{U} \subseteq \interior{Y}{U}$. \end{definition} \begin{definition}\label{finer} %<-- verfeinerung $Y$ is finer then $X$ in $U$ iff for all $n \in \dom{X}$ we have $\at{X}{n} \in \ran{Y}$ and for all $m \in \dom{X}$ such that $n < m$ we have there exist $k \in \dom{Y}$ such that $\at{Y}{k}$ is finer between $\at{X}{n}$ to $\at{X}{m}$ in $U$. \end{definition} \begin{definition}\label{follower_index} $y$ follows $x$ in $I$ iff $x < y$ and $x,y \in I$ and for all $i \in I$ such that $x < i$ we have $y \leq i$. \end{definition} \begin{definition}\label{finer_smallest_step} $Y$ is a minimal finer extention of $X$ in $U$ iff $Y$ is finer then $X$ in $U$ and for all $x_1,x_2 \in \dom{X}$ such that $x_1$ follows $x_2$ in $\dom{X}$ we have there exist $y \in \dom{Y}$ such that $y$ follows $x_1$ in $\dom{X}$ and $x_2$ follows $y$ in $\dom{X}$. \end{definition} \begin{definition}\label{sequence_of_reals} $X$ is a sequence of reals iff $\ran{X} \subseteq \reals$. \end{definition} \begin{axiom}\label{abs_behavior1} If $x \geq \zero$ then $\abs{x} = x$. \end{axiom} \begin{axiom}\label{abs_behavior2} If $x < \zero$ then $\abs{x} = \neg{x}$. \end{axiom} \begin{definition}\label{realsminus} $\realsminus = \{r \in \reals \mid r < \zero\}$. \end{definition} \begin{definition}\label{realsplus} $\realsplus = \reals \setminus \realsminus$. \end{definition} \begin{definition}\label{epsilon_ball} $\epsBall{x}{\epsilon} = \intervalopen{x-\epsilon}{x+\epsilon}$. \end{definition} \begin{definition}\label{pointwise_convergence} $X$ converge to $x$ iff for all $\epsilon \in \realsplus$ there exist $N \in \dom{X}$ such that for all $n \in \dom{X}$ such that $n > N$ we have $\at{X}{n} \in \epsBall{x}{\epsilon}$. \end{definition} \begin{proposition}\label{iff_sequence} Suppose $X$ is a function. Suppose $\dom{X} \subseteq \naturals$. Then $X$ is a sequence. \end{proposition} \begin{definition}\label{higher_urysohn_chain} $U$ is a lifted urysohnchain of $X$ iff $U$ is a sequence and $\dom{U} = \naturals$ and for all $n \in \dom{U}$ we have $\at{U}{n}$ is a urysohnchain of $X$ and $\at{U}{\suc{n}}$ is a minimal finer extention of $\at{U}{n}$ in $X$. \end{definition} \begin{definition}\label{staircase} $f$ is a staircase function adapted to $U$ in $X$ iff $U$ is a urysohnchain of $X$ and for all $x,n,m,k$ such that $k = \max{\dom{U}}$ and $n,m \in \dom{U}$ and $n$ follows $m$ in $\dom{U}$ and $x \in (\at{U}{m} \setminus \at{U}{n})$ we have $f(x)= \rfrac{m}{k}$. \end{definition} \begin{definition}\label{staircase_sequence} $f$ is staircase sequence of $U$ iff $f$ is a sequence and $U$ is a lifted urysohnchain of $X$ and $\dom{U} = \dom{f}$ and for all $n \in \dom{U}$ we have $\at{f}{n}$ is a staircase function adapted to $\at{U}{n}$ in $U$. \end{definition} \begin{theorem}\label{urysohnsetinbeetween} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $\closure{A}{X} \subseteq \interior{B}{X}$. Suppose $\carrier[X]$ is inhabited. There exist $U \subseteq \carrier[X]$ such that $U$ is closed in $X$ and $\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{B}{X}$. \end{theorem} \begin{proof} Omitted. \end{proof} \begin{theorem}\label{induction_on_urysohnchains} Let $X$ be a urysohn space. Suppose $U_0$ is a sequence. Suppose $U_0$ is a chain of subsets in $X$. Suppose $U_0$ is a urysohnchain of $X$. There exist $U$ such that $U$ is a sequence and $\dom{U} = \naturals$ and $\at{U}{\zero} = U_0$ and for all $n \in \dom{U}$ we have $\at{U}{n}$ is a urysohnchain of $X$ and $\at{U}{\suc{n}}$ is a minimal finer extention of $\at{U}{n}$ in $X$. \end{theorem} \begin{proof} $U_0$ is a urysohnchain of $X$. It suffices to show that for all $V$ such that $V$ is a urysohnchain of $X$ there exist $V'$ such that $V'$ is a urysohnchain of $X$ and $V'$ is a minimal finer extention of $V$ in $X$. \end{proof} \begin{theorem}\label{urysohn} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. Suppose $\carrier[X]$ is inhabited. There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous. \end{theorem} \begin{proof} Let $X' = \carrier[X]$. Let $N = \{\zero, 1\}$. $1 = \suc{\zero}$. $1 \in \naturals$ and $\zero \in \naturals$. $N \subseteq \naturals$. Let $A' = (X' \setminus B)$. $B \subseteq X'$ by \cref{powerset_elim,closeds}. $A \subseteq X'$. Therefore $A \subseteq A'$. Define $U_0: N \to \{A, A'\}$ such that $U_0(n) =$ \begin{cases} &A &\text{if} n = \zero \\ &A' &\text{if} n = 1 \end{cases} $U_0$ is a function. $\dom{U_0} = N$. $\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}. $U_0$ is a sequence. We have $1, \zero \in N$. We show that $U_0$ is a chain of subsets in $X$. \begin{subproof} We have $\dom{U_0} \subseteq \naturals$. We have for all $n \in \dom{U_0}$ we have $\at{U_0}{n} \subseteq \carrier[X]$ by \cref{topological_prebasis_iff_covering_family,union_as_unions,union_absorb_subseteq_left,subset_transitive,setminus_subseteq}. We have $\dom{U_0} = \{\zero, 1\}$. It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $m > n$ we have $\at{U_0}{n} \subseteq \at{U_0}{m}$. Fix $n \in \dom{U_0}$. Fix $m \in \dom{U_0}$. \begin{byCase} \caseOf{$n \neq \zero$.} Trivial. \caseOf{$n = \zero$.} \begin{byCase} \caseOf{$m = \zero$.} Trivial. \caseOf{$m \neq \zero$.} We have $A \subseteq A'$. We have $\at{U_0}{\zero} = A$ by assumption. We have $\at{U_0}{1}= A'$ by assumption. Follows by \cref{powerset_elim,emptyset_subseteq,union_as_unions,union_absorb_subseteq_left,subseteq_pow_unions,ran_converse,subseteq,subseteq_antisymmetric,suc_subseteq_intro,apply,powerset_emptyset,emptyset_is_ordinal,notin_emptyset,ordinal_elem_connex,omega_is_an_ordinal,prec_is_ordinal}. \end{byCase} \end{byCase} \end{subproof} We show that $U_0$ is a urysohnchain of $X$. \begin{subproof} It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $n < m$ we have $\closure{\at{U_0}{n}}{X} \subseteq \interior{\at{U_0}{m}}{X}$. Fix $n \in \dom{U_0}$. Fix $m \in \dom{U_0}$. \begin{byCase} \caseOf{$n \neq \zero$.} Follows by \cref{ran_converse,upair_iff,one_in_reals,order_reals_lemma0,reals_axiom_zero_in_reals,reals_one_bigger_zero,reals_order}. \caseOf{$n = \zero$.} \begin{byCase} \caseOf{$m = \zero$.} Trivial. \caseOf{$m \neq \zero$.} Follows by \cref{setminus_emptyset,setdifference_eq_intersection_with_complement,setminus_self,interior_carrier,complement_interior_eq_closure_complement,subseteq_refl,closure_interior_frontier_is_in_carrier,emptyset_subseteq,closure_is_minimal_closed_set,inter_lower_right,inter_lower_left,subseteq_transitive,interior_of_open,is_closed_in,closeds,union_absorb_subseteq_right,ordinal_suc_subseteq,ordinal_empty_or_emptyset_elem,union_absorb_subseteq_left,union_emptyset,topological_prebasis_iff_covering_family,inhabited,notin_emptyset,subseteq,union_as_unions,natural_number_is_ordinal}. \end{byCase} \end{byCase} \end{subproof} %We are done with the first step, now we want to prove that we have U a sequence of these chain with U_0 the first chain. We show that there exist $U$ such that $U$ is a sequence and $\dom{U} = \naturals$ and $\at{U}{\zero} = U_0$ and for all $n \in \dom{U}$ we have $\at{U}{n}$ is a urysohnchain of $X$ and $\at{U}{\suc{n}}$ is a minimal finer extention of $\at{U}{n}$ in $X$. \begin{subproof} Follows by \cref{chain_of_subsets,urysohnchain,induction_on_urysohnchains}. \end{subproof} \end{proof} \begin{theorem}\label{safe} Contradiction. \end{theorem} % %Ideen: %Eine folge ist ein Funktion mit domain \subseteq Natürlichenzahlen. als predicat % %zulässig und verfeinerung von ketten als predicat definieren. % %limits und punkt konvergenz als prädikat. % % %Vor dem Beweis vor dem eigentlichen Beweis. %die abgeleiteten Funktionen % %\derivedstiarcasefunction on A % %abbreviation: \at{f}{n} = f_{n} % % %TODO: %Reals ist ein topologischer Raum %