%This is just a .tex file with a wishlist of functionalitys Tupel struct \newtheorem{struct2}[theoremcount]{Struct2} \begin{theorem} %Some Theorem. \end{theorem} \begin{proof} %Wish for nice Function definition. --------------------- %Some Proof where we need a Function. %Privisuly defined. $n \in \naturals$. There is a Set $A = \{A_{0}, ..., A_{n}\}$. For all $i$ we have $A_{i} \subseteq X$. Define function $f: X \to Y$, \begin{align} &x \mapsto \rfrac{y}{n} &; if \exists k \in \{1, ... n\}. x \in A_{k} \\ &x \mapsto 0 &; if x \phi(x) \\ %phi is some fol formula &x \mapsto \eta &; for \phi(x) and \psi(\eta) &x \mapsto \some_term(x)(u)(v)(w) &; \exist.u,v,w \psi(x)(u)(v)(w) \\ % here i see the real need of varibles that can be useds in the define term &x \mapsto \some_else_term(x) &; else % the else term would be great % the following axioms should be automaticly added. % \dom{f} = X % \ran{f} \subseteq Y % f is function % therefor we should add the prompt for a proof that f is well defined \end{align} \begin{proof_well_defined} % we need to proof that f allways maps X to Y \end{proof_well_defined} % more proof but now i can use the function f % -------------------------------------------------------- \end{proof} %------------------------------------------ % My wish for a new struct % I think this could be just get implemented along with the old struct % If take we only take tupels, % then just a list of defining fol formulas should be enougth. \begin{struct2} We say $(X,O)$ is a topological space if \begin{enumerate} \item $X$ is a set. % or X = \{...\mid .. \} or X = \naturals ... or ... \item $O \subseteq \pow X$. \item $\forall x,y \in O. x \union y \in O$ \item %another formula \item %.... \end{enumerate} \end{struct2} % Then the proof of some thing is a structure is more easy. % Since if we have just a tupel and some formulas which has to be fufilled, % then we can make a proof as follows. \begin{struct2} We say $(A,i,N)$ is a indexed set if \begin{enumerate} \item $f$ is a bijection from $N$ to $A$ \item $N \subseteq \naturals$ \end{enumerate} \end{struct2} \begin{theorem} Let $A = \{ \{n\} \mid n \in \naturals \}$. Let function $f: \naturals \to \pow{\naturals}$ such that, \begin{algin} \item x \mapsto \{x\} ; x \in \naturals \end{algin} Then $(A, f, \naturals)$ is a indexed set. \end{theorem} \begin{proof} % Then we only need to proof that: % \ran{f} = A % \dom{f} = \naturals % f is a bijection between $\naturals$ to $A$. \end{proof}