\begin{axiom}\label{trivial} For all $x$ we have $x = x$. \end{axiom} % Axiom EmptyAx : ~exists x:set, x :e Empty. \begin{axiom}\label{empty_axiom} There exists no set $x$ such that $x\in\emptyset$. \end{axiom} % UnionEq : forall X x, x :e Union X <-> exists Y, x :e Y /\ Y :e X. \begin{axiom}\label{union_eq} For all $x, X$ we have $x\in\unions{X}$ iff there exists $Y$ such that $x\in Y\in X$. \end{axiom} \begin{theorem}\label{eq_refl} For all $x$ we have $x=x$. \end{theorem}