{-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TemplateHaskell #-} -- | Data types for the internal (semantic) syntax tree. module Syntax.Internal ( module Syntax.Internal , module Syntax.Abstract , module Syntax.LexicalPhrase , module Syntax.Token ) where import Base import Syntax.Lexicon (pattern PairSymbol, pattern ConsSymbol) import Syntax.LexicalPhrase (LexicalPhrase, SgPl(..), unsafeReadPhrase, unsafeReadPhraseSgPl) import Syntax.Token (Token(..)) import Syntax.Abstract ( Chain(..) , Connective(..) , VarSymbol(..) , FunctionSymbol , RelationSymbol , StructSymbol (..) , Relation , VarSymbol(..) , PropositionalConstant(..) , StructPhrase , Justification(..) , Marker(..) , pattern CarrierSymbol, pattern ConsSymbol ) import Bound import Bound.Scope import Data.Deriving (deriveShow1, deriveEq1, deriveOrd1) import Data.Hashable.Lifted import Data.HashMap.Strict qualified as HM import Data.Maybe import Data.Set qualified as Set import Data.List qualified as List import Data.List.NonEmpty qualified as NonEmpty import Text.Megaparsec.Pos (SourcePos) -- | 'Symbol's can be used as function and relation symbols. data Symbol = SymbolMixfix FunctionSymbol | SymbolFun (SgPl LexicalPhrase) | SymbolInteger Int | SymbolPredicate Predicate deriving (Show, Eq, Ord, Generic, Hashable) data Predicate = PredicateAdj LexicalPhrase | PredicateVerb (SgPl LexicalPhrase) | PredicateNoun (SgPl LexicalPhrase) -- ^ /@\<...\> is a \<...\>@/. | PredicateRelation RelationSymbol | PredicateSymbol Text | PredicateNounStruct (SgPl LexicalPhrase) -- ^ /@\<...\> is a \<...\>@/. deriving (Show, Eq, Ord, Generic, Hashable) data Quantifier = Universally | Existentially deriving (Show, Eq, Ord, Generic, Hashable) type Formula = Term type Term = Expr type Expr = ExprOf VarSymbol -- | Internal higher-order expressions. data ExprOf a = TermVar a -- ^ Fresh constants disjoint from all user-named identifiers. -- These can be used to eliminate higher-order constructs. -- | TermSymbol Symbol [ExprOf a] -- ^ Application of a symbol (including function and predicate symbols). | TermSymbolStruct StructSymbol (Maybe (ExprOf a)) -- | Apply (ExprOf a) (NonEmpty (ExprOf a)) -- ^ Higher-order application. -- | TermSep VarSymbol (ExprOf a) (Scope () ExprOf a) -- ^ Set comprehension using seperation, e.g.: /@{ x ∈ X | P(x) }@/. -- | Iota VarSymbol (Scope () ExprOf a) -- ^ Definite descriptor. -- | ReplacePred VarSymbol VarSymbol (ExprOf a) (Scope ReplacementVar ExprOf a) -- ^ Replacement for single-valued predicates. The concrete syntax for these -- syntactically requires a bounded existential quantifier in the condition: -- -- /@$\\{ y | \\exists x\\in A. P(x,y) \\}$@/ -- -- In definitions the single-valuedness of @P@ becomes a proof obligation. -- In other cases we could instead add it as constraint -- -- /@$b\\in \\{ y | \\exists x\\in A. P(x,y) \\}$@/ -- /@iff@/ -- /@$\\exists x\\in A. P(x,y)$ and $P$ is single valued@/ -- -- | ReplaceFun (NonEmpty (VarSymbol, ExprOf a)) (Scope VarSymbol ExprOf a) (Scope VarSymbol ExprOf a) -- ^ Set comprehension using functional replacement, -- e.g.: /@{ f(x, y) | x ∈ X; y ∈ Y; P(x, y) }@/. -- The list of pairs gives the domains, the integers in the scope point to list indices. -- The first scope is the lhs, the optional scope can be used for additional constraints -- on the variables (i.e. implicit separation over the product of the domains). -- An out-of-bound index is an error, since otherwise replacement becomes unsound. -- | Connected Connective (ExprOf a) (ExprOf a) | Lambda (Scope VarSymbol ExprOf a) | Quantified Quantifier (Scope VarSymbol ExprOf a) | PropositionalConstant PropositionalConstant | Not (ExprOf a) deriving (Functor, Foldable, Traversable) data ReplacementVar = ReplacementDomVar | ReplacementRangeVar deriving (Show, Eq, Ord, Generic, Hashable) makeBound ''ExprOf deriveShow1 ''ExprOf deriveEq1 ''ExprOf deriveOrd1 ''ExprOf deriving instance Show a => Show (ExprOf a) deriving instance Eq a => Eq (ExprOf a) deriving instance Ord a => Ord (ExprOf a) deriving instance Generic (ExprOf a) deriving instance Generic1 ExprOf deriving instance Hashable1 ExprOf deriving instance Hashable a => Hashable (ExprOf a) abstractVarSymbol :: VarSymbol -> ExprOf VarSymbol -> Scope VarSymbol ExprOf VarSymbol abstractVarSymbol x = abstract (\y -> if x == y then Just x else Nothing) abstractVarSymbols :: Foldable t => t VarSymbol -> ExprOf VarSymbol -> Scope VarSymbol ExprOf VarSymbol abstractVarSymbols xs = abstract (\y -> if y `elem` xs then Just y else Nothing) -- | Use the given set of in scope structures to cast them to their carriers -- when occurring on the rhs of the element relation. -- Use the given 'Map' to annotate (unannotated) structure operations -- with the most recent inscope appropriate label. annotateWith :: Set VarSymbol -> HashMap StructSymbol VarSymbol -> Formula -> Formula annotateWith = go where go :: (Ord a) => Set a -> HashMap StructSymbol a -> ExprOf a -> ExprOf a go labels ops = \case TermSymbolStruct symb Nothing -> TermSymbolStruct symb (TermVar <$> HM.lookup symb ops) e@TermSymbolStruct{} -> e a `IsElementOf` TermVar x | x `Set.member` labels -> go labels ops a `IsElementOf` TermSymbolStruct CarrierSymbol (Just (TermVar x)) Not a -> Not (go labels ops a) Connected conn a b -> Connected conn (go labels ops a) (go labels ops b) Quantified quant body -> Quantified quant (toScope (go (Set.map F labels) (F <$> ops) (fromScope body))) e@TermVar{} -> e TermSymbol symb args -> TermSymbol symb (go labels ops <$> args) Apply e1 args -> Apply (go labels ops e1) (go labels ops <$> args) TermSep vs e scope -> TermSep vs (go labels ops e) (toScope (go (Set.map F labels) (F <$> ops) (fromScope scope))) Iota x body -> Iota x (toScope (go (Set.map F labels) (F <$> ops) (fromScope body))) ReplacePred y x xB scope -> ReplacePred y x (go labels ops xB) (toScope (go (Set.map F labels) (F <$> ops) (fromScope scope))) ReplaceFun bounds ap cond -> ReplaceFun (fmap (\(x, e) -> (x, go labels ops e)) bounds) (toScope (go (Set.map F labels) (F <$> ops) (fromScope ap))) (toScope (go (Set.map F labels) (F <$> ops) (fromScope cond))) Lambda body -> Lambda (toScope (go (Set.map F labels) (F <$> ops) (fromScope body))) e@PropositionalConstant{} -> e containsHigherOrderConstructs :: ExprOf a -> Bool containsHigherOrderConstructs = \case TermSep {} -> True Iota{} -> True ReplacePred{}-> True ReplaceFun{}-> True Lambda{} -> True Apply{} -> False -- FIXME: this is a lie in general; we need to add sortchecking to determine this. TermVar{} -> False PropositionalConstant{} -> False TermSymbol _ es -> any containsHigherOrderConstructs es Not e -> containsHigherOrderConstructs e Connected _ e1 e2 -> containsHigherOrderConstructs e1 || containsHigherOrderConstructs e2 Quantified _ scope -> containsHigherOrderConstructs (fromScope scope) TermSymbolStruct _ _ -> False pattern TermOp :: FunctionSymbol -> [ExprOf a] -> ExprOf a pattern TermOp op es = TermSymbol (SymbolMixfix op) es pattern TermConst :: Token -> ExprOf a pattern TermConst c = TermOp [Just c] [] pattern TermPair :: ExprOf a -> ExprOf a -> ExprOf a pattern TermPair e1 e2 = TermOp PairSymbol [e1, e2] pattern Atomic :: Predicate -> [ExprOf a] -> ExprOf a pattern Atomic symbol args = TermSymbol (SymbolPredicate symbol) args pattern FormulaAdj :: ExprOf a -> LexicalPhrase -> [ExprOf a] -> ExprOf a pattern FormulaAdj e adj es = Atomic (PredicateAdj adj) (e:es) pattern FormulaVerb :: ExprOf a -> SgPl LexicalPhrase -> [ExprOf a] -> ExprOf a pattern FormulaVerb e verb es = Atomic (PredicateVerb verb) (e:es) pattern FormulaNoun :: ExprOf a -> SgPl LexicalPhrase -> [ExprOf a] -> ExprOf a pattern FormulaNoun e noun es = Atomic (PredicateNoun noun) (e:es) relationNoun :: Expr -> Formula relationNoun arg = FormulaNoun arg (unsafeReadPhraseSgPl "relation[/s]") [] rightUniqueAdj :: Expr -> Formula rightUniqueAdj arg = FormulaAdj arg (unsafeReadPhrase "right-unique") [] -- | Untyped quantification. pattern Forall, Exists :: Scope VarSymbol ExprOf a -> ExprOf a pattern Forall scope = Quantified Universally scope pattern Exists scope = Quantified Existentially scope makeForall, makeExists :: Foldable t => t VarSymbol -> Formula -> Formula makeForall xs e = Quantified Universally (abstractVarSymbols xs e) makeExists xs e = Quantified Existentially (abstractVarSymbols xs e) instantiateSome :: NonEmpty VarSymbol -> Scope VarSymbol ExprOf VarSymbol -> Scope VarSymbol ExprOf VarSymbol instantiateSome xs scope = toScope (instantiateEither inst scope) where inst (Left x) | x `elem` xs = TermVar (F x) inst (Left b) = TermVar (B b) inst (Right fv) = TermVar (F fv) -- | Bind all free variables not occuring in the given set universally forallClosure :: Set VarSymbol -> Formula -> Formula forallClosure xs phi = if isClosed phi then phi else Quantified Universally (abstract isNamedVar phi) where isNamedVar :: VarSymbol -> Maybe VarSymbol isNamedVar x = if x `Set.member` xs then Nothing else Just x freeVars :: ExprOf VarSymbol -> Set VarSymbol freeVars = Set.fromList . toList pattern And :: ExprOf a -> ExprOf a -> ExprOf a pattern And e1 e2 = Connected Conjunction e1 e2 pattern Or :: ExprOf a -> ExprOf a -> ExprOf a pattern Or e1 e2 = Connected Disjunction e1 e2 pattern Implies :: ExprOf a -> ExprOf a -> ExprOf a pattern Implies e1 e2 = Connected Implication e1 e2 pattern Iff :: ExprOf a -> ExprOf a -> ExprOf a pattern Iff e1 e2 = Connected Equivalence e1 e2 pattern Xor :: ExprOf a -> ExprOf a -> ExprOf a pattern Xor e1 e2 = Connected ExclusiveOr e1 e2 pattern Bottom :: ExprOf a pattern Bottom = PropositionalConstant IsBottom pattern Top :: ExprOf a pattern Top = PropositionalConstant IsTop pattern Relation :: RelationSymbol -> [ExprOf a] -> ExprOf a pattern Relation rel es = Atomic (PredicateRelation rel) es -- | Membership. pattern IsElementOf :: ExprOf a -> ExprOf a -> ExprOf a pattern IsElementOf e1 e2 = Atomic (PredicateRelation (Command "in")) (e1 : [e2]) -- | Membership. pattern IsNotElementOf :: ExprOf a -> ExprOf a -> ExprOf a pattern IsNotElementOf e1 e2 = Not (IsElementOf e1 e2) -- | Subset relation (non-strict). pattern IsSubsetOf :: ExprOf a -> ExprOf a -> ExprOf a pattern IsSubsetOf e1 e2 = Atomic (PredicateRelation (Command "subseteq")) (e1 : [e2]) -- | Ordinal predicate. pattern IsOrd :: ExprOf a -> ExprOf a pattern IsOrd e1 = Atomic (PredicateNoun (SgPl [Just "ordinal"] [Just "ordinals"])) [e1] -- | Equality. pattern Equals :: ExprOf a -> ExprOf a -> ExprOf a pattern Equals e1 e2 = Atomic (PredicateRelation (Symbol "=")) (e1 : [e2]) -- | Disequality. pattern NotEquals :: ExprOf a -> ExprOf a -> ExprOf a pattern NotEquals e1 e2 = Atomic (PredicateRelation (Command "neq")) (e1 : [e2]) pattern EmptySet :: ExprOf a pattern EmptySet = TermSymbol (SymbolMixfix [Just (Command "emptyset")]) [] makeConjunction :: [ExprOf a] -> ExprOf a makeConjunction = \case [] -> Top es -> List.foldl1' And es makeDisjunction :: [ExprOf a] -> ExprOf a makeDisjunction = \case [] -> Bottom es -> List.foldl1' Or es finiteSet :: NonEmpty (ExprOf a) -> ExprOf a finiteSet = foldr cons EmptySet where cons x y = TermSymbol (SymbolMixfix ConsSymbol) [x, y] isPositive :: ExprOf a -> Bool isPositive = \case Not _ -> False _ -> True dual :: ExprOf a -> ExprOf a dual = \case Not f -> f f -> Not f -- | Local assumptions. data Asm = Asm Formula | AsmStruct VarSymbol StructPhrase deriving instance Show Asm deriving instance Eq Asm deriving instance Ord Asm data StructAsm = StructAsm VarSymbol StructPhrase data Axiom = Axiom [Asm] Formula deriving instance Show Axiom deriving instance Eq Axiom deriving instance Ord Axiom data Lemma = Lemma [Asm] Formula deriving instance Show Lemma deriving instance Eq Lemma deriving instance Ord Lemma data Defn = DefnPredicate [Asm] Predicate (NonEmpty VarSymbol) Formula | DefnFun [Asm] (SgPl LexicalPhrase) [VarSymbol] Term | DefnOp FunctionSymbol [VarSymbol] Term deriving instance Show Defn deriving instance Eq Defn deriving instance Ord Defn data Inductive = Inductive { inductiveSymbol :: FunctionSymbol , inductiveParams :: [VarSymbol] , inductiveDomain :: Expr , inductiveIntros :: NonEmpty IntroRule } deriving (Show, Eq, Ord) data IntroRule = IntroRule { introConditions :: [Formula] -- The inductively defined set may only appear as an argument of monotone operations on the rhs. , introResult :: Formula -- TODO Refine. } deriving (Show, Eq, Ord) data Proof = Omitted -- ^ Ends a proof without further verification. -- This results in a “gap” in the formalization. | Qed Justification -- ^ Ends of a proof, leaving automation to discharge the current goal using the given justification. | ByContradiction Proof -- ^ Take the dual of the current goal as an assumption and -- set the goal to absurdity. | BySetInduction (Maybe Term) Proof -- ^ ∈-induction. | ByOrdInduction Proof -- ^ Transfinite induction for ordinals. | Assume Formula Proof -- ^ Simplify goals that are implications or disjunctions. | Fix (NonEmpty VarSymbol) Formula Proof -- ^ Simplify universal goals (with an optional bound or such that statement) | Take (NonEmpty VarSymbol) Formula Justification Proof -- ^ Use existential assumptions. | Suffices Formula Justification Proof | ByCase [Case] -- ^ Proof by case. Disjunction of the case hypotheses 'Case' -- must hold for this step to succeed. Each case starts a subproof, -- keeping the same goal but adding the case hypothesis as an assumption. -- Often this will be a classical split between /@P@/ and /@not P@/, in -- which case the proof that /@P or not P@/ holds is easy. -- | Have Formula Justification Proof -- ^ An affirmation, e.g.: /@We have \ by \@/. -- | Calc Calc Proof | Subclaim Formula Proof Proof -- ^ A claim is a sublemma with its own proof: -- -- /@Show \. \. \.@/ -- -- A successful first proof adds the claimed formula as an assumption -- for the remaining proof. -- | Define VarSymbol Term Proof | DefineFunction VarSymbol VarSymbol Term Term Proof | DefineFunctionMathy VarSymbol VarSymbol VarSymbol Term (NonEmpty (Term, Formula)) Proof deriving instance Show Proof deriving instance Eq Proof deriving instance Ord Proof -- | A case of a case split. data Case = Case { caseOf :: Formula , caseProof :: Proof } deriving instance Show Case deriving instance Eq Case deriving instance Ord Case -- | See 'Syntax.Abstract.Calc'. data Calc = Equation Term (NonEmpty (Term, Justification)) | Biconditionals Term (NonEmpty (Term, Justification)) deriving instance Show Calc deriving instance Eq Calc deriving instance Ord Calc calcResult :: Calc -> ExprOf VarSymbol calcResult = \case Equation e eqns -> e `Equals` fst (NonEmpty.last eqns) Biconditionals phi phis -> phi `Iff` fst (NonEmpty.last phis) calculation :: Calc -> [(ExprOf VarSymbol, Justification)] calculation = \case Equation e1 eqns@((e2, jst) :| _) -> (e1 `Equals` e2, jst) : collectEquations (toList eqns) Biconditionals p1 ps@((p2, jst) :| _) -> (p1 `Iff` p2, jst) : collectBiconditionals (toList ps) collectEquations :: [(ExprOf a, b)] -> [(ExprOf a, b)] collectEquations = \case (e1, _) : eqns'@((e2, jst) : _) -> (e1 `Equals` e2, jst) : collectEquations eqns' _ -> [] collectBiconditionals :: [(ExprOf a, b)] -> [(ExprOf a, b)] collectBiconditionals = \case (p1, _) : ps@((p2, jst) : _) -> (p1 `Iff` p2, jst) : collectEquations ps _ -> [] newtype Datatype = DatatypeFin (NonEmpty Text) deriving (Show, Eq, Ord) data Signature = SignaturePredicate Predicate (NonEmpty VarSymbol) | SignatureFormula Formula -- TODO: Reconsider, this is pretty lossy. deriving instance Show Signature deriving instance Eq Signature deriving instance Ord Signature data StructDefn = StructDefn { structPhrase :: StructPhrase -- ^ The noun phrase naming the structure, e.g.: @partial order@ or @abelian group@. , structParents :: Set StructPhrase , structDefnLabel :: VarSymbol , structDefnFixes :: Set StructSymbol -- ^ List of commands representing operations, -- e.g.: @\\contained@ or @\\inv@. These are used as default operation names -- in instantiations such as @Let $G$ be a group@. -- The commands should be set up to handle an optional struct label -- which would typically be rendered as a sub- or superscript, e.g.: -- @\\contained[A]@ could render as ”⊑ᴬ“. -- -- , structDefnAssumes :: [(Marker, Formula)] -- ^ The assumption or axioms of the structure. -- To be instantiate with the @structFixes@ of a given structure. } deriving instance Show StructDefn deriving instance Eq StructDefn deriving instance Ord StructDefn data Abbreviation = Abbreviation Symbol (Scope Int ExprOf Void) deriving (Show, Eq, Ord) data Block = BlockAxiom SourcePos Marker Axiom | BlockLemma SourcePos Marker Lemma | BlockProof SourcePos Proof | BlockDefn SourcePos Marker Defn | BlockAbbr SourcePos Marker Abbreviation | BlockStruct SourcePos Marker StructDefn | BlockInductive SourcePos Marker Inductive | BlockSig SourcePos [Asm] Signature deriving (Show, Eq, Ord) data Task = Task { taskDirectness :: Directness , taskHypotheses :: [(Marker, Formula)] -- ^ No guarantees on order. , taskConjectureLabel :: Marker , taskConjecture :: Formula } deriving (Show, Eq, Generic, Hashable) -- | Indicates whether a given proof is direct or indirect. -- An indirect proof (i.e. a proof by contradiction) may -- cause an ATP to emit a warning about contradictory axioms. -- When we know that the proof is indirect, we want to ignore -- this warning. For relevance filtering we also want to know -- what our actual goal is, so we keep the original conjecture. data Directness = Indirect Formula -- ^ The former conjecture. | Direct deriving (Show, Eq, Generic, Hashable) isIndirect :: Task -> Bool isIndirect task = case taskDirectness task of Indirect _ -> True Direct -> False -- | Boolean contraction of a task. contractionTask :: Task -> Task contractionTask task = task { taskHypotheses = mapMaybe contract (taskHypotheses task) , taskConjecture = contraction (taskConjecture task) } contract :: (Marker, Formula) -> Maybe (Marker, Formula) contract (m, phi) = case contraction phi of Top -> Nothing phi' -> Just (m, phi') -- | Full boolean contraction. contraction :: ExprOf a -> ExprOf a contraction = \case Connected conn f1 f2 -> atomicContraction (Connected conn (contraction f1) (contraction f2)) Quantified quant scope -> atomicContraction (Quantified quant (hoistScope contraction scope)) Not f -> Not (contraction f) f -> f -- | Atomic boolean contraction. atomicContraction :: ExprOf a -> ExprOf a atomicContraction = \case Top `Iff` f -> f Bottom `Iff` f -> Not f f `Iff` Top -> f f `Iff` Bottom -> Not f Top `Implies` f -> f Bottom `Implies` _ -> Top _ `Implies` Top -> Top f `Implies` Bottom -> Not f Top `And` f -> f Bottom `And` _ -> Bottom f `And` Top -> f _ `And` Bottom -> Bottom phi@(Quantified _quant scope) -> case unscope scope of Top -> Top Bottom -> Bottom _ -> phi Not Top -> Bottom Not Bottom -> Top f -> f