\begin{definition}\label{bar} $x$ is a bar iff $x = x$. \end{definition} \begin{definition}\label{foo} $x$ is foo iff $x = x$. \end{definition} \begin{definition}\label{baz} $x$ is baz iff $x = x$. \end{definition} \begin{proposition}\label{nouns} Let $x, y$ be bars. Then $x = x$. \end{proposition} \begin{proposition}\label{adj_nouns} Let $x, y$ be foo bars. Then $x = x$. \end{proposition} \begin{proposition}\label{nouns_suchthat} Let $x, y$ be bars such that $x$ is foo and $y$ is baz. Then $x = x$. \end{proposition} \begin{proposition}\label{noun_verb} $x = y$ iff $x$ is a bar equal to $y$. \end{proposition} \begin{proposition}\label{adjs} $x$ is foo and baz. \end{proposition}