\begin{definition}\label{collinear} $a$ is collinear with $b$ and $c$ iff $\Betw{a}{b}{c}$ or $\Betw{b}{c}{a}$ or $\Betw{c}{a}{b}$. \end{definition} \begin{axiom}[Reflexivity of congruence]\label{cong_refl_swap} % SST A1 Let $a, b$ be points. Then $\Cong{a}{b}{b}{a}$. \end{axiom} \begin{axiom}[Pseudotransitivity of congruence]\label{cong_pseudotransitive} % SST A2 Let $a, b, c, d$ be points. If $\Cong{c}{d}{a}{b}$ and $\Cong{c}{d}{e}{f}$ then $\Cong{a}{b}{e}{f}$. \end{axiom} \begin{axiom}[Identity of congruence]\label{cong_id} % SST A3 Let $a, b, c$ be points. If $\Cong{a}{b}{c}{c}$ then $a = b$. \end{axiom} \begin{axiom}[Segment construction]\label{segment_construction} % SST A4 There exists a point $c$ such that $\Betw{a}{b}{c}$ and $\Cong{b}{c}{d}{e}$. \end{axiom} \begin{definition}\label{ofs} Let $x,y,z,r,u,v,w,p$ be points. $\OFS{x}{y}{z}{r}{u}{v}{w}{p}$ if and only if $\Betw{x}{y}{z} \land \Betw{u}{v}{w}$ and $\Cong{x}{y}{u}{v} \land \Cong{y}{z}{v}{w} \land \Cong{x}{r}{u}{p} \land \Cong{y}{r}{v}{p}$. \end{definition} \begin{axiom}[Five segment axiom]\label{five_segment} % SST A5 Let $a,b,c,d,a',b',c',d'$ be points. If $\OFS{a}{b}{c}{d}{a'}{b'}{c'}{d'}$ and $a \neq b$ then $\Cong{c}{d}{c'}{d'}$. \end{axiom} \begin{axiom}[Identity of betweenness]\label{betw_id} Let $a,b$ be points. If $\Betw{a}{b}{a}$ then $a = b$. \end{axiom} \begin{axiom}[Inner Pasch]\label{innerpasch} % SST A7 Let $x,y,z,u,v,w$ be points. If $\Betw{x}{u}{z}$ and $\Betw{y}{v}{z}$ then there exists a point $w$ such that $\Betw{u}{w}{y}$ and $\Betw{v}{w}{x}$. \end{axiom} % \begin{axiom}[Lower dimension] % SST A8 % %There exist points $a, b, c$ such that % There exists $a, b, c$ such that $a,b,c$ are points and % $a$ is not collinear with $b$ and $c$. % \end{axiom} \begin{axiom}[Upper dimension]\label{upperdim} % SST A9 Let $x,y,z,u,v$ be points. If $\Cong{x}{u}{x}{v}$ and $\Cong{y}{u}{y}{v}$ and $\Cong{z}{u}{z}{v}$ and $u \neq v$ then $x$ is collinear with $y$ and $z$. \end{axiom} % \begin{axiom}[Euclid] % Assume $x \neq r$. % If $\Betw{x}{r}{v}$ and $\Betw{y}{r}{z}$ % then there exist points $s,t$ such that % $\Betw{x}{y}{s}$ and $\Betw{x}{z}{t}$ and $\Betw{s}{v}{t}$. % \end{axiom} \begin{lemma}[Reflexivity of congruence]\label{cong_refl} % Satz 2.1 Let $a, b$ be points. Then $\Cong{a}{b}{a}{b}$. \end{lemma} \begin{lemma}[Symmetry of congruence]\label{cong_sym} % Satz 2.2 Let $a, b, c, d$ be points. Suppose $\Cong{a}{b}{c}{d}$. Then $\Cong{c}{d}{a}{b}$. \end{lemma} \begin{lemma}[Transitivity of congruence]\label{cong_transitive} % Satz 2.3 Let $a, b, c, d, e, f$ be points. If $\Cong{a}{b}{c}{d}$ and $\Cong{c}{d}{e}{f}$ then $\Cong{a}{b}{e}{f}$. \end{lemma} \begin{lemma}\label{cong_shuffle_left} % Satz 2.4 Let $a, b, c, d$ be points. If $\Cong{a}{b}{c}{d}$ then $\Cong{b}{a}{c}{d}$. \end{lemma} \begin{lemma}\label{cong_shuffle_right} % Satz 2.5 Let $a, b, c, d$ be points. If $\Cong{a}{b}{c}{d}$ then $\Cong{b}{a}{d}{c}$. \end{lemma} \begin{lemma}[Zero segments are congruent]\label{cong_zero} % Satz 2.8 Let $a,b$ be points. Then $\Cong{a}{a}{b}{b}$. \end{lemma} % Somewhat slow for now. %\begin{lemma}[Concatenation of segments]\label{segment_concat} % Satz 2.11 % Assume $\Betw{x}{y}{z}$ and $\Betw{r}{v}{w}$. % Assume $\Cong{x}{y}{r}{v}$ and $\Cong{y}{z}{v}{w}$. % Then $\Cong{x}{z}{r}{w}$. %\end{lemma} %\begin{proof} % % We have % $\OFS{x}{y}{z}{x}{r}{v}{w}{r}$. % By previous results and assumption. % If $x = y$ then $r = v$. % Axiom A3 gives this implication. % If $x \neq y$ then $\Cong{x}{z}{r}{w}$. % Axiom A5 completes the proof. %\end{proof}