% Dummy setup to test the syntax and the generated proof tasks \begin{definition}\label{subseteq} $A\subseteq B$ iff $A = B$. \end{definition} \begin{definition}\label{pow} $\pow{A} = \emptyset$. \end{definition} \begin{definition}\label{cons} $\cons{a}{B} = \emptyset$. \end{definition} \begin{definition}\label{times} $A\times B = \emptyset$. \end{definition} \begin{definition}\label{fld} $\fld{R} = \emptyset$. \end{definition} \begin{definition}\label{preimg} $\preimg{R}{A} = \emptyset$. \end{definition} \begin{axiom}\label{lmao} $x\in\emptyset$. \end{axiom} \begin{inductive}\label{fin} Define $\fin{A}\subseteq\pow{A}$ inductively as follows. \begin{enumerate} \item $\emptyset \in\fin{A}$. \item If $a\in A$ and $B\in\fin{A}$, then $\cons{a}{B}\in\fin{A}$. \end{enumerate} \end{inductive} \begin{lemma}\label{fin_mono} Let $A, B$ be sets. Suppose $A\subseteq B$. Then $\fin{A}\subseteq\fin{B}$. \end{lemma} \begin{inductive}\label{tracl} Define $\tracl{R}\subseteq\fld{R}\times\fld{R}$ inductively as follows. \begin{enumerate} \item If $w\in R$, then $w\in\tracl{R}$. \item If $(a, b)\in\tracl{R}$ and $(b,c)\in R$, then $(a,c)\in\tracl{R}$. \end{enumerate} \end{inductive} \begin{inductive}\label{quasirefltracl} Define $\qrefltracl{R}\subseteq\fld{R}\times\fld{R}$ inductively as follows. \begin{enumerate} \item If $a\in\fld{R}$, then $(a,a)\in\qrefltracl{R}$. \item If $(a, b)\in\qrefltracl{R}$ and $(b,c)\in R$, then $(a,c)\in\qrefltracl{R}$. \end{enumerate} \end{inductive} \begin{inductive}\label{refltracl} Define $\refltracl{A}{R}\subseteq A\times A$ inductively as follows. \begin{enumerate} \item If $a\in A$, then $(a,a)\in\refltracl{A}{R}$. \item If $(a, b)\in\refltracl{A}{R}$ and $(b,c)\in R$, then $(a,c)\in\refltracl{A}{R}$. \end{enumerate} \end{inductive} \begin{inductive}\label{acc} Define $\acc{R}\subseteq \fld{R}$ inductively as follows. \begin{enumerate} \item If $a\in\fld{R}$ and $\preimg{R}{\{a\}}\in\pow{\acc{R}}$, then $a\in\acc{R}$. \end{enumerate} \end{inductive}