\begin{proposition}\label{in_irrefl} For all sets $A$ we have $A\not\in A$. \end{proposition} \begin{proof}[Proof by \in-induction] %Let $B$ be a set. %Suppose $b\notin b$ for all $b\in B$. %Suppose $B\in B$. %But then % $B\notin B$. Straightforward. \end{proof}