\begin{axiom}\label{cons} $x\in \cons{y}{X}$ iff $x = y$ or $x\in X$. \end{axiom} \begin{definition}\label{times} $A\times B = \{ (a,b) \mid a\in A, b\in B\}$. \end{definition} \begin{definition}\label{unit} $\unit = \{\emptyset\}$. \end{definition} \begin{proposition}\label{pair_emptyset_in_times_unit} $(\emptyset,\emptyset)\in \unit\times\unit$. \end{proposition} % Indirect definition of the Zermelo successor operation to test primitive replacement. \begin{definition}\label{suc} $\suc{a} = \{ y \mid \exists x\in a. y = \{x\} \}$. \end{definition} % Dummy proposition to test unrolling of functional replacement in equations. \begin{proposition}\label{times_replacement_test} $A\times B = \{ (a,b) \mid a\in A, b\in B\}$. \end{proposition}